66 lines
2.0 KiB
Python
66 lines
2.0 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
|
||
|
class ImageNetHEAD(nn.Sequential):
|
||
|
def __init__(self, C, stride=2):
|
||
|
super(ImageNetHEAD, self).__init__()
|
||
|
self.add_module('conv1', nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False))
|
||
|
self.add_module('bn1' , nn.BatchNorm2d(C // 2))
|
||
|
self.add_module('relu1', nn.ReLU(inplace=True))
|
||
|
self.add_module('conv2', nn.Conv2d(C // 2, C, kernel_size=3, stride=stride, padding=1, bias=False))
|
||
|
self.add_module('bn2' , nn.BatchNorm2d(C))
|
||
|
|
||
|
|
||
|
class CifarHEAD(nn.Sequential):
|
||
|
def __init__(self, C):
|
||
|
super(CifarHEAD, self).__init__()
|
||
|
self.add_module('conv', nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False))
|
||
|
self.add_module('bn', nn.BatchNorm2d(C))
|
||
|
|
||
|
|
||
|
class AuxiliaryHeadCIFAR(nn.Module):
|
||
|
|
||
|
def __init__(self, C, num_classes):
|
||
|
"""assuming input size 8x8"""
|
||
|
super(AuxiliaryHeadCIFAR, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
|
||
|
nn.Conv2d(C, 128, 1, bias=False),
|
||
|
nn.BatchNorm2d(128),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv2d(128, 768, 2, bias=False),
|
||
|
nn.BatchNorm2d(768),
|
||
|
nn.ReLU(inplace=True)
|
||
|
)
|
||
|
self.classifier = nn.Linear(768, num_classes)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.features(x)
|
||
|
x = self.classifier(x.view(x.size(0),-1))
|
||
|
return x
|
||
|
|
||
|
|
||
|
class AuxiliaryHeadImageNet(nn.Module):
|
||
|
|
||
|
def __init__(self, C, num_classes):
|
||
|
"""assuming input size 14x14"""
|
||
|
super(AuxiliaryHeadImageNet, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.AvgPool2d(5, stride=2, padding=0, count_include_pad=False),
|
||
|
nn.Conv2d(C, 128, 1, bias=False),
|
||
|
nn.BatchNorm2d(128),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv2d(128, 768, 2, bias=False),
|
||
|
nn.BatchNorm2d(768),
|
||
|
nn.ReLU(inplace=True)
|
||
|
)
|
||
|
self.classifier = nn.Linear(768, num_classes)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.features(x)
|
||
|
x = self.classifier(x.view(x.size(0),-1))
|
||
|
return x
|