autodl-projects/exps/LFNA/lfna_meta_model.py

270 lines
10 KiB
Python
Raw Normal View History

2021-05-13 15:33:34 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
import copy
import torch
import torch.nn.functional as F
2021-05-19 08:10:01 +02:00
from xautodl.xlayers import super_core
from xautodl.xlayers import trunc_normal_
from xautodl.models.xcore import get_model
2021-05-13 15:33:34 +02:00
class LFNA_Meta(super_core.SuperModule):
"""Learning to Forecast Neural Adaptation (Meta Model Design)."""
def __init__(
self,
shape_container,
2021-05-13 18:36:37 +02:00
layer_embedding,
2021-05-13 15:33:34 +02:00
time_embedding,
meta_timestamps,
2021-05-22 13:02:29 +02:00
mha_depth: int = 2,
2021-05-13 15:33:34 +02:00
dropout: float = 0.1,
2021-05-23 17:09:14 +02:00
seq_length: int = 10,
interval: float = None,
thresh: float = None,
2021-05-13 15:33:34 +02:00
):
super(LFNA_Meta, self).__init__()
self._shape_container = shape_container
self._num_layers = len(shape_container)
self._numel_per_layer = []
for ilayer in range(self._num_layers):
self._numel_per_layer.append(shape_container[ilayer].numel())
self._raw_meta_timestamps = meta_timestamps
2021-05-23 17:09:14 +02:00
assert interval is not None
self._interval = interval
self._seq_length = seq_length
self._thresh = interval * 30 if thresh is None else thresh
2021-05-13 15:33:34 +02:00
self.register_parameter(
"_super_layer_embed",
2021-05-13 18:36:37 +02:00
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embedding)),
2021-05-13 15:33:34 +02:00
)
self.register_parameter(
"_super_meta_embed",
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_embedding)),
)
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
2021-05-23 17:09:14 +02:00
# register a time difference buffer
time_interval = [-i * self._interval for i in range(self._seq_length)]
time_interval.reverse()
self.register_buffer("_time_interval", torch.Tensor(time_interval))
2021-05-13 18:36:37 +02:00
self._time_embed_dim = time_embedding
self._append_meta_embed = dict(fixed=None, learnt=None)
self._append_meta_timestamps = dict(fixed=None, learnt=None)
2021-05-13 15:33:34 +02:00
2021-05-22 10:41:54 +02:00
self._tscalar_embed = super_core.SuperDynamicPositionE(
2021-05-23 10:21:31 +02:00
time_embedding, scale=500
2021-05-22 10:41:54 +02:00
)
2021-05-13 15:33:34 +02:00
# build transformer
2021-05-23 17:09:14 +02:00
self._trans_att = super_core.SuperQKVAttention(
time_embedding,
time_embedding,
time_embedding,
time_embedding,
2021-05-23 10:21:31 +02:00
num_heads=4,
qkv_bias=True,
2021-05-22 10:41:54 +02:00
attn_drop=None,
proj_drop=dropout,
)
2021-05-13 15:33:34 +02:00
layers = []
for ilayer in range(mha_depth):
layers.append(
super_core.SuperTransformerEncoderLayer(
2021-05-22 11:36:09 +02:00
time_embedding * 2,
2021-05-13 15:33:34 +02:00
4,
True,
4,
dropout,
norm_affine=False,
order=super_core.LayerOrder.PostNorm,
2021-05-22 17:04:24 +02:00
use_mask=True,
2021-05-13 15:33:34 +02:00
)
)
2021-05-22 11:36:09 +02:00
layers.append(super_core.SuperLinear(time_embedding * 2, time_embedding))
2021-05-22 13:02:29 +02:00
self._meta_corrector = super_core.SuperSequential(*layers)
2021-05-13 15:33:34 +02:00
model_kwargs = dict(
config=dict(model_type="dual_norm_mlp"),
2021-05-13 18:36:37 +02:00
input_dim=layer_embedding + time_embedding,
2021-05-13 15:33:34 +02:00
output_dim=max(self._numel_per_layer),
2021-05-13 18:36:37 +02:00
hidden_dims=[(layer_embedding + time_embedding) * 2] * 3,
2021-05-13 15:33:34 +02:00
act_cls="gelu",
norm_cls="layer_norm_1d",
dropout=dropout,
)
self._generator = get_model(**model_kwargs)
# initialization
trunc_normal_(
2021-05-22 10:41:54 +02:00
[self._super_layer_embed, self._super_meta_embed],
2021-05-13 15:33:34 +02:00
std=0.02,
)
2021-05-22 13:02:29 +02:00
def get_parameters(self, time_embed, meta_corrector, generator):
parameters = []
if time_embed:
parameters.append(self._super_meta_embed)
if meta_corrector:
parameters.extend(list(self._trans_att.parameters()))
parameters.extend(list(self._meta_corrector.parameters()))
if generator:
parameters.append(self._super_layer_embed)
parameters.extend(list(self._generator.parameters()))
return parameters
2021-05-13 18:36:37 +02:00
@property
def meta_timestamps(self):
2021-05-22 11:36:09 +02:00
with torch.no_grad():
meta_timestamps = [self._meta_timestamps]
for key in ("fixed", "learnt"):
if self._append_meta_timestamps[key] is not None:
meta_timestamps.append(self._append_meta_timestamps[key])
2021-05-13 18:36:37 +02:00
return torch.cat(meta_timestamps)
@property
def super_meta_embed(self):
meta_embed = [self._super_meta_embed]
for key in ("fixed", "learnt"):
if self._append_meta_embed[key] is not None:
meta_embed.append(self._append_meta_embed[key])
return torch.cat(meta_embed)
def create_meta_embed(self):
2021-05-17 06:33:40 +02:00
param = torch.Tensor(1, self._time_embed_dim)
2021-05-13 18:36:37 +02:00
trunc_normal_(param, std=0.02)
2021-05-17 06:33:40 +02:00
param = param.to(self._super_meta_embed.device)
param = torch.nn.Parameter(param, True)
return param
2021-05-13 18:36:37 +02:00
def get_closest_meta_distance(self, timestamp):
with torch.no_grad():
distances = torch.abs(self.meta_timestamps - timestamp)
return torch.min(distances).item()
def replace_append_learnt(self, timestamp, meta_embed):
self._append_meta_timestamps["learnt"] = timestamp
2021-05-17 06:33:40 +02:00
self._append_meta_embed["learnt"] = meta_embed
2021-05-13 18:36:37 +02:00
2021-05-22 11:36:09 +02:00
@property
def meta_length(self):
return self.meta_timestamps.numel()
2021-05-13 18:36:37 +02:00
def append_fixed(self, timestamp, meta_embed):
with torch.no_grad():
2021-05-17 06:33:40 +02:00
device = self._super_meta_embed.device
timestamp = timestamp.detach().clone().to(device)
meta_embed = meta_embed.detach().clone().to(device)
2021-05-13 18:36:37 +02:00
if self._append_meta_timestamps["fixed"] is None:
self._append_meta_timestamps["fixed"] = timestamp
else:
self._append_meta_timestamps["fixed"] = torch.cat(
(self._append_meta_timestamps["fixed"], timestamp), dim=0
)
if self._append_meta_embed["fixed"] is None:
self._append_meta_embed["fixed"] = meta_embed
else:
self._append_meta_embed["fixed"] = torch.cat(
(self._append_meta_embed["fixed"], meta_embed), dim=0
)
2021-05-22 10:41:54 +02:00
def _obtain_time_embed(self, timestamps):
2021-05-13 15:33:34 +02:00
# timestamps is a batch of sequence of timestamps
batch, seq = timestamps.shape
2021-05-22 17:04:24 +02:00
meta_timestamps, meta_embeds = self.meta_timestamps, self.super_meta_embed
2021-05-23 17:09:14 +02:00
timestamp_q_embed = self._tscalar_embed(timestamps)
timestamp_k_embed = self._tscalar_embed(meta_timestamps.view(1, -1))
2021-05-22 17:04:24 +02:00
timestamp_v_embed = meta_embeds.unsqueeze(dim=0)
# create the mask
2021-05-23 08:22:05 +02:00
mask = (
torch.unsqueeze(timestamps, dim=-1) <= meta_timestamps.view(1, 1, -1)
) | (
torch.abs(
torch.unsqueeze(timestamps, dim=-1) - meta_timestamps.view(1, 1, -1)
)
> self._thresh
)
2021-05-22 10:41:54 +02:00
timestamp_embeds = self._trans_att(
2021-05-23 17:09:14 +02:00
timestamp_q_embed, timestamp_k_embed, timestamp_v_embed, mask
2021-05-23 10:21:31 +02:00
)
relative_timestamps = timestamps - timestamps[:, :1]
relative_pos_embeds = self._tscalar_embed(relative_timestamps)
init_timestamp_embeds = torch.cat(
(timestamp_embeds, relative_pos_embeds), dim=-1
2021-05-13 15:33:34 +02:00
)
2021-05-22 13:02:29 +02:00
corrected_embeds = self._meta_corrector(init_timestamp_embeds)
2021-05-22 10:41:54 +02:00
return corrected_embeds
2021-05-13 15:33:34 +02:00
2021-05-23 17:09:14 +02:00
def forward_raw(self, timestamps, time_embeds, get_seq_last):
if time_embeds is None:
time_seq = timestamps.view(-1, 1) + self._time_interval.view(1, -1)
B, S = time_seq.shape
time_embeds = self._obtain_time_embed(time_seq)
2021-05-22 12:12:08 +02:00
else:
2021-05-23 17:09:14 +02:00
time_seq = None
B, S, _ = time_embeds.shape
2021-05-13 15:33:34 +02:00
# create joint embed
num_layer, _ = self._super_layer_embed.shape
2021-05-23 17:09:14 +02:00
if get_seq_last:
time_embeds = time_embeds[:, -1, :]
# The shape of `joint_embed` is batch * num-layers * input-dim
joint_embeds = torch.cat(
(
time_embeds.view(B, 1, -1).expand(-1, num_layer, -1),
self._super_layer_embed.view(1, num_layer, -1).expand(B, -1, -1),
),
dim=-1,
)
else:
# The shape of `joint_embed` is batch * seq * num-layers * input-dim
joint_embeds = torch.cat(
(
time_embeds.view(B, S, 1, -1).expand(-1, -1, num_layer, -1),
self._super_layer_embed.view(1, 1, num_layer, -1).expand(
B, S, -1, -1
),
),
dim=-1,
)
batch_weights = self._generator(joint_embeds)
2021-05-13 15:33:34 +02:00
batch_containers = []
2021-05-23 17:09:14 +02:00
for weights in torch.split(batch_weights, 1):
if get_seq_last:
batch_containers.append(
self._shape_container.translate(torch.split(weights.squeeze(0), 1))
)
else:
seq_containers = []
for ws in torch.split(weights.squeeze(0), 1):
seq_containers.append(
self._shape_container.translate(torch.split(ws.squeeze(0), 1))
)
batch_containers.append(seq_containers)
return time_seq, batch_containers, time_embeds
2021-05-13 15:33:34 +02:00
def forward_candidate(self, input):
raise NotImplementedError
2021-05-23 17:09:14 +02:00
def adapt(self, timestamp, x, y, threshold, lr, epochs):
if distance + threshold * 1e-2 <= threshold:
return False
with torch.set_grad_enabled(True):
new_param = self.create_meta_embed()
optimizer = torch.optim.Adam(
[new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True
)
import pdb
pdb.set_trace()
print("-")
2021-05-13 15:33:34 +02:00
def extra_repr(self) -> str:
return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format(
list(self._super_layer_embed.shape),
list(self._super_meta_embed.shape),
list(self._meta_timestamps.shape),
)