autodl-projects/exps/LFNA/lfna_meta_model.py

187 lines
7.2 KiB
Python
Raw Normal View History

2021-05-13 15:33:34 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
import copy
import torch
import torch.nn.functional as F
from xlayers import super_core
from xlayers import trunc_normal_
from models.xcore import get_model
class LFNA_Meta(super_core.SuperModule):
"""Learning to Forecast Neural Adaptation (Meta Model Design)."""
def __init__(
self,
shape_container,
2021-05-13 18:36:37 +02:00
layer_embedding,
2021-05-13 15:33:34 +02:00
time_embedding,
meta_timestamps,
mha_depth: int = 2,
dropout: float = 0.1,
):
super(LFNA_Meta, self).__init__()
self._shape_container = shape_container
self._num_layers = len(shape_container)
self._numel_per_layer = []
for ilayer in range(self._num_layers):
self._numel_per_layer.append(shape_container[ilayer].numel())
self._raw_meta_timestamps = meta_timestamps
self.register_parameter(
"_super_layer_embed",
2021-05-13 18:36:37 +02:00
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embedding)),
2021-05-13 15:33:34 +02:00
)
self.register_parameter(
"_super_meta_embed",
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_embedding)),
)
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
2021-05-13 18:36:37 +02:00
self._time_embed_dim = time_embedding
self._append_meta_embed = dict(fixed=None, learnt=None)
self._append_meta_timestamps = dict(fixed=None, learnt=None)
2021-05-13 15:33:34 +02:00
2021-05-17 09:39:24 +02:00
self._time_prob_drop = super_core.SuperDrop(dropout, (-1, 1), recover=False)
2021-05-13 15:33:34 +02:00
# build transformer
layers = []
for ilayer in range(mha_depth):
layers.append(
super_core.SuperTransformerEncoderLayer(
time_embedding,
4,
True,
4,
dropout,
norm_affine=False,
order=super_core.LayerOrder.PostNorm,
)
)
2021-05-13 15:42:33 +02:00
layers.append(super_core.SuperLinear(time_embedding, time_embedding))
2021-05-13 15:33:34 +02:00
self.meta_corrector = super_core.SuperSequential(*layers)
model_kwargs = dict(
config=dict(model_type="dual_norm_mlp"),
2021-05-13 18:36:37 +02:00
input_dim=layer_embedding + time_embedding,
2021-05-13 15:33:34 +02:00
output_dim=max(self._numel_per_layer),
2021-05-13 18:36:37 +02:00
hidden_dims=[(layer_embedding + time_embedding) * 2] * 3,
2021-05-13 15:33:34 +02:00
act_cls="gelu",
norm_cls="layer_norm_1d",
dropout=dropout,
)
self._generator = get_model(**model_kwargs)
# print("generator: {:}".format(self._generator))
# unknown token
self.register_parameter(
2021-05-17 04:31:26 +02:00
"_unknown_token",
torch.nn.Parameter(torch.Tensor(1, time_embedding)),
2021-05-13 15:33:34 +02:00
)
# initialization
trunc_normal_(
[self._super_layer_embed, self._super_meta_embed, self._unknown_token],
std=0.02,
)
2021-05-13 18:36:37 +02:00
@property
def meta_timestamps(self):
meta_timestamps = [self._meta_timestamps]
for key in ("fixed", "learnt"):
if self._append_meta_timestamps[key] is not None:
meta_timestamps.append(self._append_meta_timestamps[key])
return torch.cat(meta_timestamps)
@property
def super_meta_embed(self):
meta_embed = [self._super_meta_embed]
for key in ("fixed", "learnt"):
if self._append_meta_embed[key] is not None:
meta_embed.append(self._append_meta_embed[key])
return torch.cat(meta_embed)
def create_meta_embed(self):
2021-05-17 06:33:40 +02:00
param = torch.Tensor(1, self._time_embed_dim)
2021-05-13 18:36:37 +02:00
trunc_normal_(param, std=0.02)
2021-05-17 06:33:40 +02:00
param = param.to(self._super_meta_embed.device)
param = torch.nn.Parameter(param, True)
return param
2021-05-13 18:36:37 +02:00
def get_closest_meta_distance(self, timestamp):
with torch.no_grad():
distances = torch.abs(self.meta_timestamps - timestamp)
return torch.min(distances).item()
def replace_append_learnt(self, timestamp, meta_embed):
self._append_meta_timestamps["learnt"] = timestamp
2021-05-17 06:33:40 +02:00
self._append_meta_embed["learnt"] = meta_embed
2021-05-13 18:36:37 +02:00
def append_fixed(self, timestamp, meta_embed):
with torch.no_grad():
2021-05-17 06:33:40 +02:00
device = self._super_meta_embed.device
timestamp = timestamp.detach().clone().to(device)
meta_embed = meta_embed.detach().clone().to(device)
2021-05-13 18:36:37 +02:00
if self._append_meta_timestamps["fixed"] is None:
self._append_meta_timestamps["fixed"] = timestamp
else:
self._append_meta_timestamps["fixed"] = torch.cat(
(self._append_meta_timestamps["fixed"], timestamp), dim=0
)
if self._append_meta_embed["fixed"] is None:
self._append_meta_embed["fixed"] = meta_embed
else:
self._append_meta_embed["fixed"] = torch.cat(
(self._append_meta_embed["fixed"], meta_embed), dim=0
)
2021-05-13 15:33:34 +02:00
def forward_raw(self, timestamps):
# timestamps is a batch of sequence of timestamps
batch, seq = timestamps.shape
timestamps = timestamps.unsqueeze(dim=-1)
2021-05-13 18:36:37 +02:00
meta_timestamps = self.meta_timestamps.view(1, 1, -1)
2021-05-13 15:33:34 +02:00
time_diffs = timestamps - meta_timestamps
time_match_v, time_match_i = torch.min(torch.abs(time_diffs), dim=-1)
# select corresponding meta-knowledge
meta_match = torch.index_select(
2021-05-13 18:36:37 +02:00
self.super_meta_embed, dim=0, index=time_match_i.view(-1)
2021-05-13 15:33:34 +02:00
)
meta_match = meta_match.view(batch, seq, -1)
# create the probability
time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1)
2021-05-17 09:39:24 +02:00
x_time_probs = self._time_prob_drop(time_probs)
# if self.training:
# time_probs[:, -1, :] = 0
2021-05-13 15:33:34 +02:00
unknown_token = self._unknown_token.view(1, 1, -1)
2021-05-17 09:39:24 +02:00
raw_meta_embed = x_time_probs * meta_match + (1 - x_time_probs) * unknown_token
2021-05-13 15:33:34 +02:00
meta_embed = self.meta_corrector(raw_meta_embed)
# create joint embed
num_layer, _ = self._super_layer_embed.shape
meta_embed = meta_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1)
layer_embed = self._super_layer_embed.view(1, 1, num_layer, -1).expand(
batch, seq, -1, -1
)
joint_embed = torch.cat((meta_embed, layer_embed), dim=-1)
batch_weights = self._generator(joint_embed)
batch_containers = []
for seq_weights in torch.split(batch_weights, 1):
seq_containers = []
for weights in torch.split(seq_weights.squeeze(0), 1):
weights = torch.split(weights.squeeze(0), 1)
seq_containers.append(self._shape_container.translate(weights))
batch_containers.append(seq_containers)
return batch_containers
def forward_candidate(self, input):
raise NotImplementedError
def extra_repr(self) -> str:
return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format(
list(self._super_layer_embed.shape),
list(self._super_meta_embed.shape),
list(self._meta_timestamps.shape),
)