2021-05-12 09:45:45 +02:00
|
|
|
#####################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
|
|
|
#####################################################
|
2021-05-13 10:39:19 +02:00
|
|
|
# python exps/LFNA/lfna-debug-hpnet.py --env_version v1 --hidden_dim 16 --meta_batch 64 --device cuda
|
2021-05-12 09:45:45 +02:00
|
|
|
#####################################################
|
|
|
|
import sys, time, copy, torch, random, argparse
|
|
|
|
from tqdm import tqdm
|
|
|
|
from copy import deepcopy
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
|
|
|
if str(lib_dir) not in sys.path:
|
|
|
|
sys.path.insert(0, str(lib_dir))
|
|
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
|
|
|
from log_utils import time_string
|
|
|
|
from log_utils import AverageMeter, convert_secs2time
|
|
|
|
|
|
|
|
from utils import split_str2indexes
|
|
|
|
|
|
|
|
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
|
|
|
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
|
|
|
from datasets.synthetic_core import get_synthetic_env
|
|
|
|
from models.xcore import get_model
|
|
|
|
from xlayers import super_core, trunc_normal_
|
|
|
|
|
|
|
|
|
|
|
|
from lfna_utils import lfna_setup, train_model, TimeData
|
|
|
|
|
|
|
|
from lfna_models import HyperNet
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
logger, env_info, model_kwargs = lfna_setup(args)
|
|
|
|
dynamic_env = env_info["dynamic_env"]
|
2021-05-12 14:32:50 +02:00
|
|
|
model = get_model(**model_kwargs)
|
2021-05-12 09:45:45 +02:00
|
|
|
criterion = torch.nn.MSELoss()
|
|
|
|
|
|
|
|
shape_container = model.get_w_container().to_shape_container()
|
2021-05-13 10:39:19 +02:00
|
|
|
hypernet = HyperNet(
|
|
|
|
shape_container, args.hidden_dim, args.task_dim, len(dynamic_env)
|
|
|
|
)
|
2021-05-12 11:36:04 +02:00
|
|
|
hypernet = hypernet.to(args.device)
|
2021-05-13 05:40:04 +02:00
|
|
|
|
|
|
|
logger.log(
|
|
|
|
"{:} There are {:} weights in the base-model.".format(
|
|
|
|
time_string(), model.numel()
|
|
|
|
)
|
|
|
|
)
|
|
|
|
logger.log(
|
|
|
|
"{:} There are {:} weights in the meta-model.".format(
|
|
|
|
time_string(), hypernet.numel()
|
|
|
|
)
|
|
|
|
)
|
2021-05-13 10:39:19 +02:00
|
|
|
|
|
|
|
for i in range(len(dynamic_env)):
|
2021-05-13 05:40:04 +02:00
|
|
|
env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device)
|
|
|
|
env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device)
|
2021-05-13 10:39:19 +02:00
|
|
|
logger.log("{:} Convert to device-{:} done".format(time_string(), args.device))
|
2021-05-12 14:32:50 +02:00
|
|
|
|
2021-05-13 09:57:41 +02:00
|
|
|
optimizer = torch.optim.Adam(
|
|
|
|
hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
|
|
|
)
|
2021-05-12 09:45:45 +02:00
|
|
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
|
|
|
optimizer,
|
2021-05-17 04:31:26 +02:00
|
|
|
milestones=[
|
|
|
|
int(args.epochs * 0.8),
|
|
|
|
int(args.epochs * 0.9),
|
|
|
|
],
|
2021-05-12 09:45:45 +02:00
|
|
|
gamma=0.1,
|
|
|
|
)
|
|
|
|
|
|
|
|
# LFNA meta-training
|
|
|
|
per_epoch_time, start_time = AverageMeter(), time.time()
|
2021-05-13 10:39:19 +02:00
|
|
|
last_success_epoch = 0
|
2021-05-12 09:45:45 +02:00
|
|
|
for iepoch in range(args.epochs):
|
|
|
|
|
|
|
|
need_time = "Time Left: {:}".format(
|
|
|
|
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
|
|
|
)
|
|
|
|
head_str = (
|
|
|
|
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
|
|
|
+ need_time
|
|
|
|
)
|
2021-05-13 10:39:19 +02:00
|
|
|
# One Epoch
|
|
|
|
loss_meter = AverageMeter()
|
|
|
|
for istep in range(args.per_epoch_step):
|
|
|
|
losses = []
|
|
|
|
for ibatch in range(args.meta_batch):
|
|
|
|
cur_time = random.randint(0, len(dynamic_env) - 1)
|
|
|
|
cur_container = hypernet(cur_time)
|
|
|
|
cur_x = env_info["{:}-x".format(cur_time)]
|
|
|
|
cur_y = env_info["{:}-y".format(cur_time)]
|
|
|
|
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
|
|
|
|
|
|
|
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
loss = criterion(preds, cur_dataset.y)
|
|
|
|
|
|
|
|
losses.append(loss)
|
|
|
|
final_loss = torch.stack(losses).mean()
|
|
|
|
final_loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
lr_scheduler.step()
|
|
|
|
loss_meter.update(final_loss.item())
|
|
|
|
success, best_score = hypernet.save_best(-loss_meter.avg)
|
2021-05-13 10:07:54 +02:00
|
|
|
if success:
|
|
|
|
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
2021-05-13 10:39:19 +02:00
|
|
|
last_success_epoch = iepoch
|
|
|
|
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
2021-05-13 10:07:54 +02:00
|
|
|
logger.log("Early stop at {:}".format(iepoch))
|
|
|
|
break
|
2021-05-13 10:39:19 +02:00
|
|
|
logger.log(
|
|
|
|
head_str
|
|
|
|
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format(
|
|
|
|
loss_meter.avg,
|
|
|
|
loss_meter.val,
|
|
|
|
min(lr_scheduler.get_last_lr()),
|
|
|
|
len(losses),
|
2021-05-12 09:45:45 +02:00
|
|
|
)
|
2021-05-13 10:39:19 +02:00
|
|
|
)
|
2021-05-12 09:45:45 +02:00
|
|
|
|
2021-05-13 10:39:19 +02:00
|
|
|
save_checkpoint(
|
|
|
|
{
|
|
|
|
"hypernet": hypernet.state_dict(),
|
|
|
|
"lr_scheduler": lr_scheduler.state_dict(),
|
|
|
|
"iepoch": iepoch,
|
|
|
|
},
|
|
|
|
logger.path("model"),
|
|
|
|
logger,
|
|
|
|
)
|
2021-05-12 09:45:45 +02:00
|
|
|
per_epoch_time.update(time.time() - start_time)
|
|
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
print(model)
|
|
|
|
print(hypernet)
|
2021-05-13 09:57:41 +02:00
|
|
|
hypernet.load_best()
|
2021-05-12 09:45:45 +02:00
|
|
|
|
2021-05-12 14:32:50 +02:00
|
|
|
w_container_per_epoch = dict()
|
2021-05-13 10:39:19 +02:00
|
|
|
for idx in range(0, env_info["total"]):
|
2021-05-12 14:32:50 +02:00
|
|
|
future_x = env_info["{:}-x".format(idx)]
|
|
|
|
future_y = env_info["{:}-y".format(idx)]
|
2021-05-13 09:57:41 +02:00
|
|
|
future_container = hypernet(idx)
|
2021-05-12 14:32:50 +02:00
|
|
|
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
|
|
|
with torch.no_grad():
|
|
|
|
future_y_hat = model.forward_with_container(
|
|
|
|
future_x, w_container_per_epoch[idx]
|
|
|
|
)
|
|
|
|
future_loss = criterion(future_y_hat, future_y)
|
|
|
|
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
|
|
|
|
|
|
|
save_checkpoint(
|
|
|
|
{"w_container_per_epoch": w_container_per_epoch},
|
|
|
|
logger.path(None) / "final-ckp.pth",
|
|
|
|
logger,
|
|
|
|
)
|
|
|
|
|
2021-05-12 09:45:45 +02:00
|
|
|
logger.log("-" * 200 + "\n")
|
|
|
|
logger.close()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser("Use the data in the past.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--save_dir",
|
|
|
|
type=str,
|
2021-05-13 10:39:19 +02:00
|
|
|
default="./outputs/lfna-synthetic/lfna-debug-hpnet",
|
2021-05-12 09:45:45 +02:00
|
|
|
help="The checkpoint directory.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--env_version",
|
|
|
|
type=str,
|
|
|
|
required=True,
|
|
|
|
help="The synthetic enviornment version.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
2021-05-17 04:31:26 +02:00
|
|
|
"--hidden_dim",
|
|
|
|
type=int,
|
|
|
|
required=True,
|
|
|
|
help="The hidden dimension.",
|
2021-05-12 09:45:45 +02:00
|
|
|
)
|
|
|
|
#####
|
|
|
|
parser.add_argument(
|
|
|
|
"--init_lr",
|
|
|
|
type=float,
|
2021-05-13 10:39:19 +02:00
|
|
|
default=0.01,
|
2021-05-12 09:45:45 +02:00
|
|
|
help="The initial learning rate for the optimizer (default is Adam)",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
2021-05-17 04:31:26 +02:00
|
|
|
"--meta_batch",
|
|
|
|
type=int,
|
|
|
|
default=64,
|
|
|
|
help="The batch size for the meta-model",
|
2021-05-12 09:45:45 +02:00
|
|
|
)
|
2021-05-13 10:39:19 +02:00
|
|
|
parser.add_argument(
|
|
|
|
"--early_stop_thresh",
|
|
|
|
type=int,
|
|
|
|
default=100,
|
|
|
|
help="The maximum epochs for early stop.",
|
|
|
|
)
|
2021-05-12 09:45:45 +02:00
|
|
|
parser.add_argument(
|
2021-05-17 04:31:26 +02:00
|
|
|
"--epochs",
|
|
|
|
type=int,
|
|
|
|
default=2000,
|
|
|
|
help="The total number of epochs.",
|
2021-05-12 09:45:45 +02:00
|
|
|
)
|
2021-05-13 10:39:19 +02:00
|
|
|
parser.add_argument(
|
2021-05-17 04:31:26 +02:00
|
|
|
"--per_epoch_step",
|
|
|
|
type=int,
|
|
|
|
default=20,
|
|
|
|
help="The total number of epochs.",
|
2021-05-13 10:39:19 +02:00
|
|
|
)
|
2021-05-12 11:36:04 +02:00
|
|
|
parser.add_argument(
|
2021-05-17 04:31:26 +02:00
|
|
|
"--device",
|
|
|
|
type=str,
|
|
|
|
default="cpu",
|
|
|
|
help="",
|
2021-05-12 11:36:04 +02:00
|
|
|
)
|
2021-05-12 09:45:45 +02:00
|
|
|
# Random Seed
|
|
|
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.rand_seed is None or args.rand_seed < 0:
|
|
|
|
args.rand_seed = random.randint(1, 100000)
|
|
|
|
assert args.save_dir is not None, "The save dir argument can not be None"
|
2021-05-13 10:39:19 +02:00
|
|
|
args.task_dim = args.hidden_dim
|
2021-05-12 09:45:45 +02:00
|
|
|
args.save_dir = "{:}-{:}-d{:}".format(
|
|
|
|
args.save_dir, args.env_version, args.hidden_dim
|
|
|
|
)
|
|
|
|
main(args)
|