| 
									
										
										
										
											2020-02-23 10:30:37 +11:00
										 |  |  | ############################################################################################## | 
					
						
							|  |  |  | # This code is copied and modified from Hanxiao Liu's work (https://github.com/quark0/darts) # | 
					
						
							|  |  |  | ############################################################################################## | 
					
						
							| 
									
										
										
										
											2019-09-28 18:24:47 +10:00
										 |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | OPS = { | 
					
						
							|  |  |  |   'none'         : lambda C_in, C_out, stride, affine: Zero(stride), | 
					
						
							|  |  |  |   'avg_pool_3x3' : lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'avg'), | 
					
						
							|  |  |  |   'max_pool_3x3' : lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'max'), | 
					
						
							|  |  |  |   'nor_conv_7x7' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), affine), | 
					
						
							|  |  |  |   'nor_conv_3x3' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), affine), | 
					
						
							|  |  |  |   'nor_conv_1x1' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), affine), | 
					
						
							|  |  |  |   'skip_connect' : lambda C_in, C_out, stride, affine: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine), | 
					
						
							|  |  |  |   'sep_conv_3x3' : lambda C_in, C_out, stride, affine: SepConv(C_in, C_out, 3, stride, 1, affine=affine), | 
					
						
							|  |  |  |   'sep_conv_5x5' : lambda C_in, C_out, stride, affine: SepConv(C_in, C_out, 5, stride, 2, affine=affine), | 
					
						
							|  |  |  |   'sep_conv_7x7' : lambda C_in, C_out, stride, affine: SepConv(C_in, C_out, 7, stride, 3, affine=affine), | 
					
						
							|  |  |  |   'dil_conv_3x3' : lambda C_in, C_out, stride, affine: DilConv(C_in, C_out, 3, stride, 2, 2, affine=affine), | 
					
						
							|  |  |  |   'dil_conv_5x5' : lambda C_in, C_out, stride, affine: DilConv(C_in, C_out, 5, stride, 4, 2, affine=affine), | 
					
						
							|  |  |  |   'conv_7x1_1x7' : lambda C_in, C_out, stride, affine: Conv717(C_in, C_out, stride, affine), | 
					
						
							|  |  |  |   'conv_3x1_1x3' : lambda C_in, C_out, stride, affine: Conv313(C_in, C_out, stride, affine) | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class POOLING(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, C_in, C_out, stride, mode): | 
					
						
							|  |  |  |     super(POOLING, self).__init__() | 
					
						
							|  |  |  |     if C_in == C_out: | 
					
						
							|  |  |  |       self.preprocess = None | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0) | 
					
						
							|  |  |  |     if mode == 'avg'  : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) | 
					
						
							|  |  |  |     elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, inputs): | 
					
						
							|  |  |  |     if self.preprocess is not None: | 
					
						
							|  |  |  |       x = self.preprocess(inputs) | 
					
						
							|  |  |  |     else: x = inputs | 
					
						
							|  |  |  |     return self.op(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Conv313(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, C_in, C_out, stride, affine): | 
					
						
							|  |  |  |     super(Conv313, self).__init__() | 
					
						
							|  |  |  |     self.op = nn.Sequential( | 
					
						
							|  |  |  |       nn.ReLU(inplace=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_in , C_out, (1,3), stride=(1, stride), padding=(0, 1), bias=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_out, C_out, (3,1), stride=(stride, 1), padding=(1, 0), bias=False), | 
					
						
							|  |  |  |       nn.BatchNorm2d(C_out, affine=affine) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, x): | 
					
						
							|  |  |  |     return self.op(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Conv717(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, C_in, C_out, stride, affine): | 
					
						
							|  |  |  |     super(Conv717, self).__init__() | 
					
						
							|  |  |  |     self.op = nn.Sequential( | 
					
						
							|  |  |  |       nn.ReLU(inplace=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_in , C_out, (1,7), stride=(1, stride), padding=(0, 3), bias=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_out, C_out, (7,1), stride=(stride, 1), padding=(3, 0), bias=False), | 
					
						
							|  |  |  |       nn.BatchNorm2d(C_out, affine=affine) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, x): | 
					
						
							|  |  |  |     return self.op(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ReLUConvBN(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): | 
					
						
							|  |  |  |     super(ReLUConvBN, self).__init__() | 
					
						
							|  |  |  |     self.op = nn.Sequential( | 
					
						
							|  |  |  |       nn.ReLU(inplace=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=False), | 
					
						
							|  |  |  |       nn.BatchNorm2d(C_out, affine=affine) | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, x): | 
					
						
							|  |  |  |     return self.op(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class DilConv(nn.Module): | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True): | 
					
						
							|  |  |  |     super(DilConv, self).__init__() | 
					
						
							|  |  |  |     self.op = nn.Sequential( | 
					
						
							|  |  |  |       nn.ReLU(inplace=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_in, C_in,  kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), | 
					
						
							|  |  |  |       nn.BatchNorm2d(C_out, affine=affine), | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, x): | 
					
						
							|  |  |  |     return self.op(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SepConv(nn.Module): | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |   def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): | 
					
						
							|  |  |  |     super(SepConv, self).__init__() | 
					
						
							|  |  |  |     self.op = nn.Sequential( | 
					
						
							|  |  |  |       nn.ReLU(inplace=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False), | 
					
						
							|  |  |  |       nn.BatchNorm2d(C_in, affine=affine), | 
					
						
							|  |  |  |       nn.ReLU(inplace=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=     1, padding=padding, groups=C_in, bias=False), | 
					
						
							|  |  |  |       nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), | 
					
						
							|  |  |  |       nn.BatchNorm2d(C_out, affine=affine), | 
					
						
							|  |  |  |       ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, x): | 
					
						
							|  |  |  |     return self.op(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Identity(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self): | 
					
						
							|  |  |  |     super(Identity, self).__init__() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, x): | 
					
						
							|  |  |  |     return x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Zero(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, stride): | 
					
						
							|  |  |  |     super(Zero, self).__init__() | 
					
						
							|  |  |  |     self.stride = stride | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, x): | 
					
						
							|  |  |  |     if self.stride == 1: | 
					
						
							|  |  |  |       return x.mul(0.) | 
					
						
							|  |  |  |     return x[:,:,::self.stride,::self.stride].mul(0.) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def extra_repr(self): | 
					
						
							|  |  |  |     return 'stride={stride}'.format(**self.__dict__) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class FactorizedReduce(nn.Module): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def __init__(self, C_in, C_out, stride, affine=True): | 
					
						
							|  |  |  |     super(FactorizedReduce, self).__init__() | 
					
						
							|  |  |  |     self.stride = stride | 
					
						
							|  |  |  |     self.C_in   = C_in   | 
					
						
							|  |  |  |     self.C_out  = C_out   | 
					
						
							|  |  |  |     self.relu   = nn.ReLU(inplace=False) | 
					
						
							|  |  |  |     if stride == 2: | 
					
						
							|  |  |  |       #assert C_out % 2 == 0, 'C_out : {:}'.format(C_out) | 
					
						
							|  |  |  |       C_outs = [C_out // 2, C_out - C_out // 2] | 
					
						
							|  |  |  |       self.convs = nn.ModuleList() | 
					
						
							|  |  |  |       for i in range(2): | 
					
						
							|  |  |  |         self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) ) | 
					
						
							|  |  |  |       self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) | 
					
						
							|  |  |  |     elif stride == 4: | 
					
						
							|  |  |  |       assert C_out % 4 == 0, 'C_out : {:}'.format(C_out) | 
					
						
							|  |  |  |       self.convs = nn.ModuleList() | 
					
						
							|  |  |  |       for i in range(4): | 
					
						
							|  |  |  |         self.convs.append( nn.Conv2d(C_in, C_out // 4, 1, stride=stride, padding=0, bias=False) ) | 
					
						
							|  |  |  |       self.pad = nn.ConstantPad2d((0, 3, 0, 3), 0) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       raise ValueError('Invalid stride : {:}'.format(stride)) | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     self.bn = nn.BatchNorm2d(C_out, affine=affine) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def forward(self, x): | 
					
						
							|  |  |  |     x = self.relu(x) | 
					
						
							|  |  |  |     y = self.pad(x) | 
					
						
							|  |  |  |     if self.stride == 2: | 
					
						
							|  |  |  |       out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |       out = torch.cat([self.convs[0](x),            self.convs[1](y[:,:,1:-2,1:-2]), | 
					
						
							|  |  |  |                        self.convs[2](y[:,:,2:-1,2:-1]), self.convs[3](y[:,:,3:,3:])], dim=1) | 
					
						
							|  |  |  |     out = self.bn(out) | 
					
						
							|  |  |  |     return out | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   def extra_repr(self): | 
					
						
							|  |  |  |     return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__) |