autodl-projects/exps/LFNA/basic-same.py

191 lines
6.2 KiB
Python
Raw Normal View History

2021-04-29 13:06:45 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
2021-05-12 12:58:54 +02:00
# python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16
2021-05-09 19:02:38 +02:00
# python exps/LFNA/basic-same.py --srange 1-999 --env_version v2 --hidden_dim
2021-04-29 13:06:45 +02:00
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import time_string
from log_utils import AverageMeter, convert_secs2time
from utils import split_str2indexes
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env
from models.xcore import get_model
2021-05-09 19:02:38 +02:00
from lfna_utils import lfna_setup
2021-04-29 13:06:45 +02:00
def subsample(historical_x, historical_y, maxn=10000):
total = historical_x.size(0)
if total <= maxn:
return historical_x, historical_y
else:
indexes = torch.randint(low=0, high=total, size=[maxn])
return historical_x[indexes], historical_y[indexes]
def main(args):
2021-05-09 19:02:38 +02:00
logger, env_info, model_kwargs = lfna_setup(args)
2021-04-29 13:06:45 +02:00
2021-05-07 08:27:15 +02:00
w_container_per_epoch = dict()
2021-04-29 13:06:45 +02:00
per_timestamp_time, start_time = AverageMeter(), time.time()
2021-05-12 12:58:54 +02:00
for idx in range(env_info["total"]):
2021-04-29 13:06:45 +02:00
need_time = "Time Left: {:}".format(
2021-05-12 12:58:54 +02:00
convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True)
2021-04-29 13:06:45 +02:00
)
logger.log(
"[{:}]".format(time_string())
2021-05-12 12:58:54 +02:00
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
2021-04-29 13:06:45 +02:00
+ " "
+ need_time
)
# train the same data
2021-04-29 13:11:48 +02:00
historical_x = env_info["{:}-x".format(idx)]
historical_y = env_info["{:}-y".format(idx)]
2021-04-29 13:06:45 +02:00
# build model
2021-05-12 12:58:54 +02:00
model = get_model(**model_kwargs)
print(model)
2021-05-12 13:09:17 +02:00
model.analyze_weights()
2021-04-29 13:06:45 +02:00
# build optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
criterion = torch.nn.MSELoss()
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.25),
int(args.epochs * 0.5),
int(args.epochs * 0.75),
],
gamma=0.3,
)
train_metric = MSEMetric()
best_loss, best_param = None, None
for _iepoch in range(args.epochs):
preds = model(historical_x)
optimizer.zero_grad()
loss = criterion(preds, historical_y)
loss.backward()
optimizer.step()
lr_scheduler.step()
# save best
if best_loss is None or best_loss > loss.item():
best_loss = loss.item()
best_param = copy.deepcopy(model.state_dict())
model.load_state_dict(best_param)
with torch.no_grad():
train_metric(preds, historical_y)
train_results = train_metric.get_info()
metric = ComposeMetric(MSEMetric(), SaveMetric())
eval_dataset = torch.utils.data.TensorDataset(
env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)]
)
eval_loader = torch.utils.data.DataLoader(
eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
)
results = basic_eval_fn(eval_loader, model, metric, logger)
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
+ " train-mse: {:.5f}, eval-mse: {:.5f}".format(
train_results["mse"], results["mse"]
)
)
logger.log(log_str)
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
idx, env_info["total"]
)
2021-05-07 08:27:15 +02:00
w_container_per_epoch[idx] = model.get_w_container().no_grad_clone()
2021-04-29 13:06:45 +02:00
save_checkpoint(
{
2021-04-29 13:48:21 +02:00
"model_state_dict": model.state_dict(),
"model": model,
2021-04-29 13:06:45 +02:00
"index": idx,
"timestamp": env_info["{:}-timestamp".format(idx)],
},
save_path,
logger,
)
logger.log("")
per_timestamp_time.update(time.time() - start_time)
start_time = time.time()
2021-05-09 19:02:38 +02:00
2021-05-07 08:27:15 +02:00
save_checkpoint(
{"w_container_per_epoch": w_container_per_epoch},
logger.path(None) / "final-ckp.pth",
logger,
)
2021-04-29 13:06:45 +02:00
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
2021-04-29 13:11:48 +02:00
parser = argparse.ArgumentParser("Use the data in the past.")
2021-04-29 13:06:45 +02:00
parser.add_argument(
"--save_dir",
type=str,
2021-04-29 13:11:48 +02:00
default="./outputs/lfna-synthetic/use-same-timestamp",
2021-04-29 13:06:45 +02:00
help="The checkpoint directory.",
)
2021-05-09 19:02:38 +02:00
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
parser.add_argument(
"--hidden_dim",
type=int,
required=True,
help="The hidden dimension.",
)
2021-04-29 13:06:45 +02:00
parser.add_argument(
"--init_lr",
type=float,
default=0.1,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--batch_size",
type=int,
default=512,
help="The batch size",
)
parser.add_argument(
"--epochs",
type=int,
2021-05-12 13:09:17 +02:00
default=300,
2021-04-29 13:06:45 +02:00
help="The total number of epochs.",
)
parser.add_argument(
"--workers",
type=int,
default=4,
help="The number of data loading workers (default: 4)",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
2021-05-09 19:02:38 +02:00
args.save_dir = "{:}-{:}-d{:}".format(
args.save_dir, args.env_version, args.hidden_dim
)
2021-04-29 13:06:45 +02:00
main(args)