autodl-projects/lib/xlayers/super_mlp.py

99 lines
2.9 KiB
Python
Raw Normal View History

2021-03-18 11:32:26 +01:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
2021-03-18 13:15:50 +01:00
import torch
2021-03-17 11:06:29 +01:00
import torch.nn as nn
2021-03-18 11:32:26 +01:00
import math
from typing import Optional, Union
import spaces
2021-03-18 13:15:50 +01:00
from .super_module import SuperModule
from .super_module import SuperRunMode
2021-03-18 11:32:26 +01:00
IntSpaceType = Union[int, spaces.Integer, spaces.Categorical]
BoolSpaceType = Union[bool, spaces.Categorical]
2021-03-18 08:04:14 +01:00
2021-03-18 09:02:55 +01:00
class SuperLinear(SuperModule):
"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`"""
2021-03-18 08:04:14 +01:00
2021-03-18 11:32:26 +01:00
def __init__(
self,
in_features: IntSpaceType,
out_features: IntSpaceType,
bias: BoolSpaceType = True,
) -> None:
2021-03-18 09:02:55 +01:00
super(SuperLinear, self).__init__()
2021-03-18 11:32:26 +01:00
# the raw input args
self._in_features = in_features
self._out_features = out_features
self._bias = bias
2021-03-18 13:15:50 +01:00
self._super_weight = torch.nn.Parameter(
2021-03-18 11:32:26 +01:00
torch.Tensor(self.out_features, self.in_features)
)
2021-03-18 13:15:50 +01:00
if self.bias:
self._super_bias = torch.nn.Parameter(torch.Tensor(self.out_features))
2021-03-18 08:04:14 +01:00
else:
2021-03-18 11:32:26 +01:00
self.register_parameter("_super_bias", None)
2021-03-18 08:04:14 +01:00
self.reset_parameters()
2021-03-18 11:32:26 +01:00
@property
def in_features(self):
return spaces.get_max(self._in_features)
@property
def out_features(self):
return spaces.get_max(self._out_features)
@property
def bias(self):
return spaces.has_categorical(self._bias, True)
2021-03-18 13:15:50 +01:00
def abstract_search_space(self):
print('-')
2021-03-18 08:04:14 +01:00
def reset_parameters(self) -> None:
2021-03-18 11:32:26 +01:00
nn.init.kaiming_uniform_(self._super_weight, a=math.sqrt(5))
if self.bias:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self._super_weight)
2021-03-18 08:04:14 +01:00
bound = 1 / math.sqrt(fan_in)
2021-03-18 11:32:26 +01:00
nn.init.uniform_(self._super_bias, -bound, bound)
2021-03-18 08:04:14 +01:00
2021-03-18 13:15:50 +01:00
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
2021-03-18 11:32:26 +01:00
return F.linear(input, self._super_weight, self._super_bias)
2021-03-18 08:04:14 +01:00
def extra_repr(self) -> str:
2021-03-18 09:02:55 +01:00
return "in_features={:}, out_features={:}, bias={:}".format(
2021-03-18 11:32:26 +01:00
self.in_features, self.out_features, self.bias
2021-03-18 08:04:14 +01:00
)
2021-03-18 09:02:55 +01:00
2021-03-18 08:04:14 +01:00
class SuperMLP(nn.Module):
2021-03-18 09:02:55 +01:00
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(
self,
in_features,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None,
):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x