autodl-projects/lib/datasets/synthetic_env.py

168 lines
5.2 KiB
Python
Raw Normal View History

2021-04-22 17:08:43 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
import math
2021-05-13 15:33:34 +02:00
import random
2021-04-22 17:08:43 +02:00
import numpy as np
2021-04-26 14:16:38 +02:00
from typing import List, Optional, Dict
2021-04-22 17:08:43 +02:00
import torch
import torch.utils.data as data
2021-04-26 14:16:38 +02:00
from .synthetic_utils import TimeStamp
2021-04-22 17:08:43 +02:00
2021-05-13 15:33:34 +02:00
def is_list_tuple(x):
return isinstance(x, (tuple, list))
def zip_sequence(sequence):
def _combine(*alist):
if is_list_tuple(alist[0]):
return [_combine(*xlist) for xlist in zip(*alist)]
else:
return torch.cat(alist, dim=0)
def unsqueeze(a):
if is_list_tuple(a):
return [unsqueeze(x) for x in a]
else:
return a.unsqueeze(dim=0)
with torch.no_grad():
sequence = [unsqueeze(a) for a in sequence]
return _combine(*sequence)
2021-04-26 14:16:38 +02:00
class SyntheticDEnv(data.Dataset):
2021-04-22 17:08:43 +02:00
"""The synethtic dynamic environment."""
def __init__(
self,
2021-04-26 14:16:38 +02:00
mean_functors: List[data.Dataset],
cov_functors: List[List[data.Dataset]],
2021-04-22 17:08:43 +02:00
num_per_task: int = 5000,
2021-04-26 15:16:08 +02:00
timestamp_config: Optional[Dict] = None,
2021-04-22 17:08:43 +02:00
mode: Optional[str] = None,
):
2021-04-26 14:16:38 +02:00
self._ndim = len(mean_functors)
2021-04-22 17:08:43 +02:00
assert self._ndim == len(
2021-04-26 14:16:38 +02:00
cov_functors
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functors))
for cov_functor in cov_functors:
2021-04-22 17:08:43 +02:00
assert self._ndim == len(
2021-04-26 14:16:38 +02:00
cov_functor
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functor))
2021-04-22 17:08:43 +02:00
self._num_per_task = num_per_task
2021-04-26 15:16:08 +02:00
if timestamp_config is None:
timestamp_config = dict(mode=mode)
2021-05-13 15:33:34 +02:00
elif "mode" not in timestamp_config:
2021-04-26 15:16:08 +02:00
timestamp_config["mode"] = mode
2021-04-22 17:08:43 +02:00
2021-04-26 15:16:08 +02:00
self._timestamp_generator = TimeStamp(**timestamp_config)
2021-04-22 17:08:43 +02:00
2021-04-26 14:16:38 +02:00
self._mean_functors = mean_functors
self._cov_functors = cov_functors
2021-04-22 17:08:43 +02:00
2021-04-27 14:09:37 +02:00
self._oracle_map = None
2021-05-13 15:33:34 +02:00
self._seq_length = None
2021-04-27 14:09:37 +02:00
2021-04-28 17:56:25 +02:00
@property
def min_timestamp(self):
return self._timestamp_generator.min_timestamp
@property
def max_timestamp(self):
return self._timestamp_generator.max_timestamp
2021-05-10 08:14:06 +02:00
@property
def timestamp_interval(self):
return self._timestamp_generator.interval
2021-05-13 15:33:34 +02:00
def reset_max_seq_length(self, seq_length):
self._seq_length = seq_length
2021-05-13 09:32:44 +02:00
def get_timestamp(self, index):
2021-05-13 15:33:34 +02:00
if index is None:
timestamps = []
for index in range(len(self._timestamp_generator)):
timestamps.append(self._timestamp_generator[index][1])
return tuple(timestamps)
else:
index, timestamp = self._timestamp_generator[index]
return timestamp
2021-05-13 09:32:44 +02:00
2021-04-27 14:09:37 +02:00
def set_oracle_map(self, functor):
self._oracle_map = functor
2021-04-22 17:08:43 +02:00
def __iter__(self):
self._iter_num = 0
return self
def __next__(self):
if self._iter_num >= len(self):
raise StopIteration
self._iter_num += 1
return self.__getitem__(self._iter_num - 1)
def __getitem__(self, index):
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
2021-04-26 14:16:38 +02:00
index, timestamp = self._timestamp_generator[index]
2021-05-13 15:33:34 +02:00
if self._seq_length is None:
return self.__call__(timestamp)
else:
2021-05-13 15:42:33 +02:00
noise = random.random() * self.timestamp_interval * 0.3
2021-05-13 15:33:34 +02:00
timestamps = [
2021-05-13 15:42:33 +02:00
timestamp + i * self.timestamp_interval + noise
for i in range(self._seq_length)
2021-05-13 15:33:34 +02:00
]
xdata = [self.__call__(timestamp) for timestamp in timestamps]
return zip_sequence(xdata)
2021-05-10 08:14:06 +02:00
def __call__(self, timestamp):
2021-04-26 14:16:38 +02:00
mean_list = [functor(timestamp) for functor in self._mean_functors]
2021-04-22 17:08:43 +02:00
cov_matrix = [
2021-04-28 17:56:25 +02:00
[abs(cov_gen(timestamp)) for cov_gen in cov_functor]
2021-04-26 14:16:38 +02:00
for cov_functor in self._cov_functors
2021-04-22 17:08:43 +02:00
]
dataset = np.random.multivariate_normal(
mean_list, cov_matrix, size=self._num_per_task
)
2021-04-27 14:09:37 +02:00
if self._oracle_map is None:
2021-05-13 15:33:34 +02:00
return torch.Tensor([timestamp]), torch.Tensor(dataset)
2021-04-27 14:09:37 +02:00
else:
targets = self._oracle_map.noise_call(dataset, timestamp)
2021-05-13 15:33:34 +02:00
return torch.Tensor([timestamp]), (
torch.Tensor(dataset),
torch.Tensor(targets),
)
2021-04-22 17:08:43 +02:00
def __len__(self):
2021-04-26 14:16:38 +02:00
return len(self._timestamp_generator)
2021-04-22 17:08:43 +02:00
def __repr__(self):
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format(
name=self.__class__.__name__,
cur_num=len(self),
2021-04-26 14:16:38 +02:00
total=len(self._timestamp_generator),
2021-04-22 17:08:43 +02:00
ndim=self._ndim,
num_per_task=self._num_per_task,
)
2021-05-13 15:33:34 +02:00
class EnvSampler:
def __init__(self, env, batch, enlarge):
indexes = list(range(len(env)))
self._indexes = indexes * enlarge
self._batch = batch
self._iterations = len(self._indexes) // self._batch
def __iter__(self):
random.shuffle(self._indexes)
for it in range(self._iterations):
indexes = self._indexes[it * self._batch : (it + 1) * self._batch]
yield indexes
def __len__(self):
return self._iterations