autodl-projects/lib/datasets/synthetic_env.py

103 lines
3.2 KiB
Python
Raw Normal View History

2021-04-22 17:08:43 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
import math
import abc
import numpy as np
2021-04-26 14:16:38 +02:00
from typing import List, Optional, Dict
2021-04-22 17:08:43 +02:00
import torch
import torch.utils.data as data
2021-04-26 14:16:38 +02:00
from .synthetic_utils import TimeStamp
2021-04-22 17:08:43 +02:00
2021-04-26 14:16:38 +02:00
class SyntheticDEnv(data.Dataset):
2021-04-22 17:08:43 +02:00
"""The synethtic dynamic environment."""
def __init__(
self,
2021-04-26 14:16:38 +02:00
mean_functors: List[data.Dataset],
cov_functors: List[List[data.Dataset]],
2021-04-22 17:08:43 +02:00
num_per_task: int = 5000,
2021-04-26 15:16:08 +02:00
timestamp_config: Optional[Dict] = None,
2021-04-22 17:08:43 +02:00
mode: Optional[str] = None,
):
2021-04-26 14:16:38 +02:00
self._ndim = len(mean_functors)
2021-04-22 17:08:43 +02:00
assert self._ndim == len(
2021-04-26 14:16:38 +02:00
cov_functors
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functors))
for cov_functor in cov_functors:
2021-04-22 17:08:43 +02:00
assert self._ndim == len(
2021-04-26 14:16:38 +02:00
cov_functor
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functor))
2021-04-22 17:08:43 +02:00
self._num_per_task = num_per_task
2021-04-26 15:16:08 +02:00
if timestamp_config is None:
timestamp_config = dict(mode=mode)
2021-04-26 14:16:38 +02:00
else:
2021-04-26 15:16:08 +02:00
timestamp_config["mode"] = mode
2021-04-22 17:08:43 +02:00
2021-04-26 15:16:08 +02:00
self._timestamp_generator = TimeStamp(**timestamp_config)
2021-04-22 17:08:43 +02:00
2021-04-26 14:16:38 +02:00
self._mean_functors = mean_functors
self._cov_functors = cov_functors
2021-04-22 17:08:43 +02:00
2021-04-27 14:09:37 +02:00
self._oracle_map = None
2021-04-28 17:56:25 +02:00
@property
def min_timestamp(self):
return self._timestamp_generator.min_timestamp
@property
def max_timestamp(self):
return self._timestamp_generator.max_timestamp
2021-05-10 08:14:06 +02:00
@property
def timestamp_interval(self):
return self._timestamp_generator.interval
2021-04-27 14:09:37 +02:00
def set_oracle_map(self, functor):
self._oracle_map = functor
2021-04-22 17:08:43 +02:00
def __iter__(self):
self._iter_num = 0
return self
def __next__(self):
if self._iter_num >= len(self):
raise StopIteration
self._iter_num += 1
return self.__getitem__(self._iter_num - 1)
def __getitem__(self, index):
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
2021-04-26 14:16:38 +02:00
index, timestamp = self._timestamp_generator[index]
2021-05-10 08:14:06 +02:00
return self.__call__(timestamp)
def __call__(self, timestamp):
2021-04-26 14:16:38 +02:00
mean_list = [functor(timestamp) for functor in self._mean_functors]
2021-04-22 17:08:43 +02:00
cov_matrix = [
2021-04-28 17:56:25 +02:00
[abs(cov_gen(timestamp)) for cov_gen in cov_functor]
2021-04-26 14:16:38 +02:00
for cov_functor in self._cov_functors
2021-04-22 17:08:43 +02:00
]
dataset = np.random.multivariate_normal(
mean_list, cov_matrix, size=self._num_per_task
)
2021-04-27 14:09:37 +02:00
if self._oracle_map is None:
return timestamp, torch.Tensor(dataset)
else:
targets = self._oracle_map.noise_call(dataset, timestamp)
return timestamp, (torch.Tensor(dataset), torch.Tensor(targets))
2021-04-22 17:08:43 +02:00
def __len__(self):
2021-04-26 14:16:38 +02:00
return len(self._timestamp_generator)
2021-04-22 17:08:43 +02:00
def __repr__(self):
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format(
name=self.__class__.__name__,
cur_num=len(self),
2021-04-26 14:16:38 +02:00
total=len(self._timestamp_generator),
2021-04-22 17:08:43 +02:00
ndim=self._ndim,
num_per_task=self._num_per_task,
)