autodl-projects/lib/datasets/synthetic_adaptive_environment.py

85 lines
3.0 KiB
Python
Raw Normal View History

2021-04-13 19:04:46 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import numpy as np
from typing import Optional
import torch.utils.data as data
class SynAdaptiveEnv(data.Dataset):
"""The synethtic dataset for adaptive environment."""
def __init__(
self,
max_num_phase: int = 100,
interval: float = 0.1,
max_scale: float = 4,
offset_scale: float = 1.5,
mode: Optional[str] = None,
):
self._max_num_phase = max_num_phase
self._interval = interval
self._times = np.arange(0, np.pi * self._max_num_phase, self._interval)
xmin, xmax = self._times.min(), self._times.max()
self._inputs = []
self._total_num = len(self._times)
for i in range(self._total_num):
scale = (i + 1.0) / self._total_num * max_scale
sin_scale = (i + 1.0) / self._total_num * 0.7
sin_scale = -4 * (sin_scale - 0.5) ** 2 + 1
# scale = -(self._times[i] - (xmin - xmax) / 2) + max_scale
self._inputs.append(
np.sin(self._times[i] * sin_scale) * (offset_scale - scale)
)
self._inputs = np.array(self._inputs)
# Training Set 60%
num_of_train = int(self._total_num * 0.6)
# Validation Set 20%
num_of_valid = int(self._total_num * 0.2)
# Test Set 20%
num_of_set = self._total_num - num_of_train - num_of_valid
all_indexes = list(range(self._total_num))
if mode is None:
self._indexes = all_indexes
elif mode.lower() in ("train", "training"):
self._indexes = all_indexes[:num_of_train]
elif mode.lower() in ("valid", "validation"):
self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid]
elif mode.lower() in ("test", "testing"):
self._indexes = all_indexes[num_of_train + num_of_valid :]
else:
raise ValueError("Unkonwn mode of {:}".format(mode))
# transformation function
self._transform = None
def set_transform(self, fn):
self._transform = fn
def __iter__(self):
self._iter_num = 0
return self
def __next__(self):
if self._iter_num >= len(self):
raise StopIteration
self._iter_num += 1
return self.__getitem__(self._iter_num - 1)
def __getitem__(self, index):
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
index = self._indexes[index]
value = float(self._inputs[index])
if self._transform is not None:
value = self._transform(value)
return index, float(self._times[index]), value
def __len__(self):
return len(self._indexes)
def __repr__(self):
return "{name}({cur_num:}/{total} elements)".format(
name=self.__class__.__name__, cur_num=self._total_num, total=len(self)
)