85 lines
3.0 KiB
Python
85 lines
3.0 KiB
Python
|
#####################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||
|
#####################################################
|
||
|
import numpy as np
|
||
|
from typing import Optional
|
||
|
import torch.utils.data as data
|
||
|
|
||
|
|
||
|
class SynAdaptiveEnv(data.Dataset):
|
||
|
"""The synethtic dataset for adaptive environment."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
max_num_phase: int = 100,
|
||
|
interval: float = 0.1,
|
||
|
max_scale: float = 4,
|
||
|
offset_scale: float = 1.5,
|
||
|
mode: Optional[str] = None,
|
||
|
):
|
||
|
|
||
|
self._max_num_phase = max_num_phase
|
||
|
self._interval = interval
|
||
|
|
||
|
self._times = np.arange(0, np.pi * self._max_num_phase, self._interval)
|
||
|
xmin, xmax = self._times.min(), self._times.max()
|
||
|
self._inputs = []
|
||
|
self._total_num = len(self._times)
|
||
|
for i in range(self._total_num):
|
||
|
scale = (i + 1.0) / self._total_num * max_scale
|
||
|
sin_scale = (i + 1.0) / self._total_num * 0.7
|
||
|
sin_scale = -4 * (sin_scale - 0.5) ** 2 + 1
|
||
|
# scale = -(self._times[i] - (xmin - xmax) / 2) + max_scale
|
||
|
self._inputs.append(
|
||
|
np.sin(self._times[i] * sin_scale) * (offset_scale - scale)
|
||
|
)
|
||
|
self._inputs = np.array(self._inputs)
|
||
|
# Training Set 60%
|
||
|
num_of_train = int(self._total_num * 0.6)
|
||
|
# Validation Set 20%
|
||
|
num_of_valid = int(self._total_num * 0.2)
|
||
|
# Test Set 20%
|
||
|
num_of_set = self._total_num - num_of_train - num_of_valid
|
||
|
all_indexes = list(range(self._total_num))
|
||
|
if mode is None:
|
||
|
self._indexes = all_indexes
|
||
|
elif mode.lower() in ("train", "training"):
|
||
|
self._indexes = all_indexes[:num_of_train]
|
||
|
elif mode.lower() in ("valid", "validation"):
|
||
|
self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid]
|
||
|
elif mode.lower() in ("test", "testing"):
|
||
|
self._indexes = all_indexes[num_of_train + num_of_valid :]
|
||
|
else:
|
||
|
raise ValueError("Unkonwn mode of {:}".format(mode))
|
||
|
# transformation function
|
||
|
self._transform = None
|
||
|
|
||
|
def set_transform(self, fn):
|
||
|
self._transform = fn
|
||
|
|
||
|
def __iter__(self):
|
||
|
self._iter_num = 0
|
||
|
return self
|
||
|
|
||
|
def __next__(self):
|
||
|
if self._iter_num >= len(self):
|
||
|
raise StopIteration
|
||
|
self._iter_num += 1
|
||
|
return self.__getitem__(self._iter_num - 1)
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||
|
index = self._indexes[index]
|
||
|
value = float(self._inputs[index])
|
||
|
if self._transform is not None:
|
||
|
value = self._transform(value)
|
||
|
return index, float(self._times[index]), value
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self._indexes)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "{name}({cur_num:}/{total} elements)".format(
|
||
|
name=self.__class__.__name__, cur_num=self._total_num, total=len(self)
|
||
|
)
|