41 lines
1.2 KiB
Python
41 lines
1.2 KiB
Python
|
#####################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||
|
#####################################################
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
import math
|
||
|
from typing import Optional, Callable
|
||
|
|
||
|
import spaces
|
||
|
from .super_module import SuperModule
|
||
|
from .super_module import IntSpaceType
|
||
|
from .super_module import BoolSpaceType
|
||
|
|
||
|
|
||
|
class SuperDropout(SuperModule):
|
||
|
"""Applies a the dropout function element-wise."""
|
||
|
|
||
|
def __init__(self, p: float = 0.5, inplace: bool = False) -> None:
|
||
|
super(SuperDropout, self).__init__()
|
||
|
self._p = p
|
||
|
self._inplace = inplace
|
||
|
|
||
|
@property
|
||
|
def abstract_search_space(self):
|
||
|
return spaces.VirtualNode(id(self))
|
||
|
|
||
|
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||
|
return self.forward_raw(input)
|
||
|
|
||
|
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||
|
return F.dropout(input, self._p, self.training, self._inplace)
|
||
|
|
||
|
def forward_with_container(self, input, container, prefix=[]):
|
||
|
return self.forward_raw(input)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
xstr = "inplace=True" if self._inplace else ""
|
||
|
return "p={:}".format(self._p) + ", " + xstr
|