51 lines
1.9 KiB
Python
51 lines
1.9 KiB
Python
|
##################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||
|
##################################################
|
||
|
import math, random
|
||
|
import tensorflow as tf
|
||
|
from copy import deepcopy
|
||
|
from ..cell_operations import OPS
|
||
|
|
||
|
|
||
|
class SearchCell(tf.keras.layers.Layer):
|
||
|
|
||
|
def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False):
|
||
|
super(SearchCell, self).__init__()
|
||
|
|
||
|
self.op_names = deepcopy(op_names)
|
||
|
self.max_nodes = max_nodes
|
||
|
self.in_dim = C_in
|
||
|
self.out_dim = C_out
|
||
|
self.edge_keys = []
|
||
|
for i in range(1, max_nodes):
|
||
|
for j in range(i):
|
||
|
node_str = '{:}<-{:}'.format(i, j)
|
||
|
if j == 0:
|
||
|
xlists = [OPS[op_name](C_in , C_out, stride, affine) for op_name in op_names]
|
||
|
else:
|
||
|
xlists = [OPS[op_name](C_in , C_out, 1, affine) for op_name in op_names]
|
||
|
for k, op in enumerate(xlists):
|
||
|
setattr(self, '{:}.{:}'.format(node_str, k), op)
|
||
|
self.edge_keys.append( node_str )
|
||
|
self.edge_keys = sorted(self.edge_keys)
|
||
|
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
|
||
|
self.num_edges = len(self.edge_keys)
|
||
|
|
||
|
def call(self, inputs, weightss, training):
|
||
|
w_lst = tf.split(weightss, self.num_edges, 0)
|
||
|
nodes = [inputs]
|
||
|
for i in range(1, self.max_nodes):
|
||
|
inter_nodes = []
|
||
|
for j in range(i):
|
||
|
node_str = '{:}<-{:}'.format(i, j)
|
||
|
edge_idx = self.edge2index[node_str]
|
||
|
op_outps = []
|
||
|
for k, op_name in enumerate(self.op_names):
|
||
|
op = getattr(self, '{:}.{:}'.format(node_str, k))
|
||
|
op_outps.append( op(nodes[j], training) )
|
||
|
stack_op_outs = tf.stack(op_outps, axis=-1)
|
||
|
weighted_sums = tf.math.multiply(stack_op_outs, w_lst[edge_idx])
|
||
|
inter_nodes.append( tf.math.reduce_sum(weighted_sums, axis=-1) )
|
||
|
nodes.append( tf.math.add_n(inter_nodes) )
|
||
|
return nodes[-1]
|