2021-05-13 15:33:34 +02:00
|
|
|
#####################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
|
|
|
#####################################################
|
|
|
|
import copy
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from xlayers import super_core
|
|
|
|
from xlayers import trunc_normal_
|
|
|
|
from models.xcore import get_model
|
|
|
|
|
|
|
|
|
|
|
|
class LFNA_Meta(super_core.SuperModule):
|
|
|
|
"""Learning to Forecast Neural Adaptation (Meta Model Design)."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
shape_container,
|
2021-05-13 18:36:37 +02:00
|
|
|
layer_embedding,
|
2021-05-13 15:33:34 +02:00
|
|
|
time_embedding,
|
|
|
|
meta_timestamps,
|
|
|
|
mha_depth: int = 2,
|
|
|
|
dropout: float = 0.1,
|
|
|
|
):
|
|
|
|
super(LFNA_Meta, self).__init__()
|
|
|
|
self._shape_container = shape_container
|
|
|
|
self._num_layers = len(shape_container)
|
|
|
|
self._numel_per_layer = []
|
|
|
|
for ilayer in range(self._num_layers):
|
|
|
|
self._numel_per_layer.append(shape_container[ilayer].numel())
|
|
|
|
self._raw_meta_timestamps = meta_timestamps
|
|
|
|
|
|
|
|
self.register_parameter(
|
|
|
|
"_super_layer_embed",
|
2021-05-13 18:36:37 +02:00
|
|
|
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embedding)),
|
2021-05-13 15:33:34 +02:00
|
|
|
)
|
|
|
|
self.register_parameter(
|
|
|
|
"_super_meta_embed",
|
|
|
|
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_embedding)),
|
|
|
|
)
|
|
|
|
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
|
2021-05-13 18:36:37 +02:00
|
|
|
self._time_embed_dim = time_embedding
|
|
|
|
self._append_meta_embed = dict(fixed=None, learnt=None)
|
|
|
|
self._append_meta_timestamps = dict(fixed=None, learnt=None)
|
2021-05-13 15:33:34 +02:00
|
|
|
|
|
|
|
# build transformer
|
|
|
|
layers = []
|
|
|
|
for ilayer in range(mha_depth):
|
|
|
|
layers.append(
|
|
|
|
super_core.SuperTransformerEncoderLayer(
|
|
|
|
time_embedding,
|
|
|
|
4,
|
|
|
|
True,
|
|
|
|
4,
|
|
|
|
dropout,
|
|
|
|
norm_affine=False,
|
|
|
|
order=super_core.LayerOrder.PostNorm,
|
|
|
|
)
|
|
|
|
)
|
2021-05-13 15:42:33 +02:00
|
|
|
layers.append(super_core.SuperLinear(time_embedding, time_embedding))
|
2021-05-13 15:33:34 +02:00
|
|
|
self.meta_corrector = super_core.SuperSequential(*layers)
|
|
|
|
|
|
|
|
model_kwargs = dict(
|
|
|
|
config=dict(model_type="dual_norm_mlp"),
|
2021-05-13 18:36:37 +02:00
|
|
|
input_dim=layer_embedding + time_embedding,
|
2021-05-13 15:33:34 +02:00
|
|
|
output_dim=max(self._numel_per_layer),
|
2021-05-13 18:36:37 +02:00
|
|
|
hidden_dims=[(layer_embedding + time_embedding) * 2] * 3,
|
2021-05-13 15:33:34 +02:00
|
|
|
act_cls="gelu",
|
|
|
|
norm_cls="layer_norm_1d",
|
|
|
|
dropout=dropout,
|
|
|
|
)
|
|
|
|
self._generator = get_model(**model_kwargs)
|
|
|
|
# print("generator: {:}".format(self._generator))
|
|
|
|
|
|
|
|
# unknown token
|
|
|
|
self.register_parameter(
|
2021-05-17 04:31:26 +02:00
|
|
|
"_unknown_token",
|
|
|
|
torch.nn.Parameter(torch.Tensor(1, time_embedding)),
|
2021-05-13 15:33:34 +02:00
|
|
|
)
|
|
|
|
|
|
|
|
# initialization
|
|
|
|
trunc_normal_(
|
|
|
|
[self._super_layer_embed, self._super_meta_embed, self._unknown_token],
|
|
|
|
std=0.02,
|
|
|
|
)
|
|
|
|
|
2021-05-13 18:36:37 +02:00
|
|
|
@property
|
|
|
|
def meta_timestamps(self):
|
|
|
|
meta_timestamps = [self._meta_timestamps]
|
|
|
|
for key in ("fixed", "learnt"):
|
|
|
|
if self._append_meta_timestamps[key] is not None:
|
|
|
|
meta_timestamps.append(self._append_meta_timestamps[key])
|
|
|
|
return torch.cat(meta_timestamps)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def super_meta_embed(self):
|
|
|
|
meta_embed = [self._super_meta_embed]
|
|
|
|
for key in ("fixed", "learnt"):
|
|
|
|
if self._append_meta_embed[key] is not None:
|
|
|
|
meta_embed.append(self._append_meta_embed[key])
|
|
|
|
return torch.cat(meta_embed)
|
|
|
|
|
|
|
|
def create_meta_embed(self):
|
2021-05-17 06:33:40 +02:00
|
|
|
param = torch.Tensor(1, self._time_embed_dim)
|
2021-05-13 18:36:37 +02:00
|
|
|
trunc_normal_(param, std=0.02)
|
2021-05-17 06:33:40 +02:00
|
|
|
param = param.to(self._super_meta_embed.device)
|
|
|
|
param = torch.nn.Parameter(param, True)
|
|
|
|
return param
|
2021-05-13 18:36:37 +02:00
|
|
|
|
|
|
|
def get_closest_meta_distance(self, timestamp):
|
|
|
|
with torch.no_grad():
|
|
|
|
distances = torch.abs(self.meta_timestamps - timestamp)
|
|
|
|
return torch.min(distances).item()
|
|
|
|
|
|
|
|
def replace_append_learnt(self, timestamp, meta_embed):
|
|
|
|
self._append_meta_timestamps["learnt"] = timestamp
|
2021-05-17 06:33:40 +02:00
|
|
|
self._append_meta_embed["learnt"] = meta_embed
|
2021-05-13 18:36:37 +02:00
|
|
|
|
|
|
|
def append_fixed(self, timestamp, meta_embed):
|
|
|
|
with torch.no_grad():
|
2021-05-17 06:33:40 +02:00
|
|
|
device = self._super_meta_embed.device
|
|
|
|
timestamp = timestamp.detach().clone().to(device)
|
|
|
|
meta_embed = meta_embed.detach().clone().to(device)
|
2021-05-13 18:36:37 +02:00
|
|
|
if self._append_meta_timestamps["fixed"] is None:
|
|
|
|
self._append_meta_timestamps["fixed"] = timestamp
|
|
|
|
else:
|
|
|
|
self._append_meta_timestamps["fixed"] = torch.cat(
|
|
|
|
(self._append_meta_timestamps["fixed"], timestamp), dim=0
|
|
|
|
)
|
|
|
|
if self._append_meta_embed["fixed"] is None:
|
|
|
|
self._append_meta_embed["fixed"] = meta_embed
|
|
|
|
else:
|
|
|
|
self._append_meta_embed["fixed"] = torch.cat(
|
|
|
|
(self._append_meta_embed["fixed"], meta_embed), dim=0
|
|
|
|
)
|
|
|
|
|
2021-05-13 15:33:34 +02:00
|
|
|
def forward_raw(self, timestamps):
|
|
|
|
# timestamps is a batch of sequence of timestamps
|
|
|
|
batch, seq = timestamps.shape
|
|
|
|
timestamps = timestamps.unsqueeze(dim=-1)
|
2021-05-13 18:36:37 +02:00
|
|
|
meta_timestamps = self.meta_timestamps.view(1, 1, -1)
|
2021-05-13 15:33:34 +02:00
|
|
|
time_diffs = timestamps - meta_timestamps
|
|
|
|
time_match_v, time_match_i = torch.min(torch.abs(time_diffs), dim=-1)
|
|
|
|
# select corresponding meta-knowledge
|
|
|
|
meta_match = torch.index_select(
|
2021-05-13 18:36:37 +02:00
|
|
|
self.super_meta_embed, dim=0, index=time_match_i.view(-1)
|
2021-05-13 15:33:34 +02:00
|
|
|
)
|
|
|
|
meta_match = meta_match.view(batch, seq, -1)
|
|
|
|
# create the probability
|
|
|
|
time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1)
|
2021-05-13 18:36:37 +02:00
|
|
|
if self.training:
|
|
|
|
time_probs[:, -1, :] = 0
|
2021-05-13 15:33:34 +02:00
|
|
|
unknown_token = self._unknown_token.view(1, 1, -1)
|
|
|
|
raw_meta_embed = time_probs * meta_match + (1 - time_probs) * unknown_token
|
|
|
|
|
|
|
|
meta_embed = self.meta_corrector(raw_meta_embed)
|
|
|
|
# create joint embed
|
|
|
|
num_layer, _ = self._super_layer_embed.shape
|
|
|
|
meta_embed = meta_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1)
|
|
|
|
layer_embed = self._super_layer_embed.view(1, 1, num_layer, -1).expand(
|
|
|
|
batch, seq, -1, -1
|
|
|
|
)
|
|
|
|
joint_embed = torch.cat((meta_embed, layer_embed), dim=-1)
|
|
|
|
batch_weights = self._generator(joint_embed)
|
|
|
|
batch_containers = []
|
|
|
|
for seq_weights in torch.split(batch_weights, 1):
|
|
|
|
seq_containers = []
|
|
|
|
for weights in torch.split(seq_weights.squeeze(0), 1):
|
|
|
|
weights = torch.split(weights.squeeze(0), 1)
|
|
|
|
seq_containers.append(self._shape_container.translate(weights))
|
|
|
|
batch_containers.append(seq_containers)
|
|
|
|
return batch_containers
|
|
|
|
|
|
|
|
def forward_candidate(self, input):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
def extra_repr(self) -> str:
|
|
|
|
return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format(
|
|
|
|
list(self._super_layer_embed.shape),
|
|
|
|
list(self._super_meta_embed.shape),
|
|
|
|
list(self._meta_timestamps.shape),
|
|
|
|
)
|