2020-07-13 05:43:10 +02:00
|
|
|
##################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
|
|
|
#####################################################################################################
|
|
|
|
# modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py #
|
|
|
|
#####################################################################################################
|
2020-08-30 10:04:52 +02:00
|
|
|
# python ./exps/NATS-algos/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.01
|
|
|
|
# python ./exps/NATS-algos/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.01
|
|
|
|
# python ./exps/NATS-algos/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.01
|
|
|
|
# python ./exps/NATS-algos/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.01
|
|
|
|
# python ./exps/NATS-algos/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.01
|
|
|
|
# python ./exps/NATS-algos/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.01
|
2020-07-13 05:43:10 +02:00
|
|
|
#####################################################################################################
|
|
|
|
import os, sys, time, glob, random, argparse
|
|
|
|
import numpy as np, collections
|
|
|
|
from copy import deepcopy
|
|
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.distributions import Categorical
|
|
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
|
|
from config_utils import load_config, dict2config, configure2str
|
|
|
|
from datasets import get_datasets, SearchDataset
|
|
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
|
|
|
from utils import get_model_infos, obtain_accuracy
|
|
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
|
|
|
from models import CellStructure, get_search_spaces
|
2020-07-30 15:07:11 +02:00
|
|
|
from nats_bench import create
|
2020-07-13 05:43:10 +02:00
|
|
|
|
|
|
|
|
|
|
|
class PolicyTopology(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, search_space, max_nodes=4):
|
|
|
|
super(PolicyTopology, self).__init__()
|
|
|
|
self.max_nodes = max_nodes
|
|
|
|
self.search_space = deepcopy(search_space)
|
|
|
|
self.edge2index = {}
|
|
|
|
for i in range(1, max_nodes):
|
|
|
|
for j in range(i):
|
|
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
|
|
self.edge2index[ node_str ] = len(self.edge2index)
|
|
|
|
self.arch_parameters = nn.Parameter(1e-3*torch.randn(len(self.edge2index), len(search_space)))
|
|
|
|
|
|
|
|
def generate_arch(self, actions):
|
|
|
|
genotypes = []
|
|
|
|
for i in range(1, self.max_nodes):
|
|
|
|
xlist = []
|
|
|
|
for j in range(i):
|
|
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
|
|
op_name = self.search_space[ actions[ self.edge2index[ node_str ] ] ]
|
|
|
|
xlist.append((op_name, j))
|
|
|
|
genotypes.append( tuple(xlist) )
|
|
|
|
return CellStructure( genotypes )
|
|
|
|
|
|
|
|
def genotype(self):
|
|
|
|
genotypes = []
|
|
|
|
for i in range(1, self.max_nodes):
|
|
|
|
xlist = []
|
|
|
|
for j in range(i):
|
|
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
|
|
with torch.no_grad():
|
|
|
|
weights = self.arch_parameters[ self.edge2index[node_str] ]
|
|
|
|
op_name = self.search_space[ weights.argmax().item() ]
|
|
|
|
xlist.append((op_name, j))
|
|
|
|
genotypes.append( tuple(xlist) )
|
|
|
|
return CellStructure( genotypes )
|
|
|
|
|
|
|
|
def forward(self):
|
|
|
|
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
|
|
|
return alphas
|
|
|
|
|
|
|
|
|
|
|
|
class PolicySize(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, search_space):
|
|
|
|
super(PolicySize, self).__init__()
|
|
|
|
self.candidates = search_space['candidates']
|
|
|
|
self.numbers = search_space['numbers']
|
|
|
|
self.arch_parameters = nn.Parameter(1e-3*torch.randn(self.numbers, len(self.candidates)))
|
|
|
|
|
|
|
|
def generate_arch(self, actions):
|
|
|
|
channels = [str(self.candidates[i]) for i in actions]
|
|
|
|
return ':'.join(channels)
|
|
|
|
|
|
|
|
def genotype(self):
|
|
|
|
channels = []
|
|
|
|
for i in range(self.numbers):
|
|
|
|
index = self.arch_parameters[i].argmax().item()
|
|
|
|
channels.append(str(self.candidates[index]))
|
|
|
|
return ':'.join(channels)
|
|
|
|
|
|
|
|
def forward(self):
|
|
|
|
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
|
|
|
return alphas
|
|
|
|
|
|
|
|
|
|
|
|
class ExponentialMovingAverage(object):
|
|
|
|
"""Class that maintains an exponential moving average."""
|
|
|
|
|
|
|
|
def __init__(self, momentum):
|
|
|
|
self._numerator = 0
|
|
|
|
self._denominator = 0
|
|
|
|
self._momentum = momentum
|
|
|
|
|
|
|
|
def update(self, value):
|
|
|
|
self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value
|
|
|
|
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
|
|
|
|
|
|
|
|
def value(self):
|
|
|
|
"""Return the current value of the moving average"""
|
|
|
|
return self._numerator / self._denominator
|
|
|
|
|
|
|
|
|
|
|
|
def select_action(policy):
|
|
|
|
probs = policy()
|
|
|
|
m = Categorical(probs)
|
|
|
|
action = m.sample()
|
|
|
|
# policy.saved_log_probs.append(m.log_prob(action))
|
|
|
|
return m.log_prob(action), action.cpu().tolist()
|
|
|
|
|
|
|
|
|
|
|
|
def main(xargs, api):
|
2020-07-13 12:04:52 +02:00
|
|
|
torch.set_num_threads(4)
|
2020-07-13 05:43:10 +02:00
|
|
|
prepare_seed(xargs.rand_seed)
|
|
|
|
logger = prepare_logger(args)
|
|
|
|
|
|
|
|
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
|
|
|
if xargs.search_space == 'tss':
|
|
|
|
policy = PolicyTopology(search_space)
|
|
|
|
else:
|
|
|
|
policy = PolicySize(search_space)
|
|
|
|
optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate)
|
|
|
|
#optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate)
|
|
|
|
eps = np.finfo(np.float32).eps.item()
|
|
|
|
baseline = ExponentialMovingAverage(xargs.EMA_momentum)
|
|
|
|
logger.log('policy : {:}'.format(policy))
|
|
|
|
logger.log('optimizer : {:}'.format(optimizer))
|
|
|
|
logger.log('eps : {:}'.format(eps))
|
|
|
|
|
|
|
|
# nas dataset load
|
|
|
|
logger.log('{:} use api : {:}'.format(time_string(), api))
|
2020-07-13 12:04:52 +02:00
|
|
|
api.reset_time()
|
2020-07-13 05:43:10 +02:00
|
|
|
|
|
|
|
# REINFORCE
|
|
|
|
x_start_time = time.time()
|
|
|
|
logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget))
|
|
|
|
total_steps, total_costs, trace = 0, [], []
|
2020-07-13 13:35:13 +02:00
|
|
|
current_best_index = []
|
2020-07-13 05:43:10 +02:00
|
|
|
while len(total_costs) == 0 or total_costs[-1] < xargs.time_budget:
|
|
|
|
start_time = time.time()
|
|
|
|
log_prob, action = select_action( policy )
|
|
|
|
arch = policy.generate_arch( action )
|
2020-07-14 13:53:21 +02:00
|
|
|
reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, hp='12')
|
2020-07-13 05:43:10 +02:00
|
|
|
trace.append((reward, arch))
|
|
|
|
total_costs.append(current_total_cost)
|
|
|
|
|
|
|
|
baseline.update(reward)
|
|
|
|
# calculate loss
|
|
|
|
policy_loss = ( -log_prob * (reward - baseline.value()) ).sum()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
policy_loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
# accumulate time
|
|
|
|
total_steps += 1
|
|
|
|
logger.log('step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(total_steps, baseline.value(), policy_loss.item(), policy.genotype()))
|
2020-07-13 13:35:13 +02:00
|
|
|
# to analyze
|
|
|
|
current_best_index.append(api.query_index_by_arch(max(trace, key=lambda x: x[0])[1]))
|
2020-07-13 05:43:10 +02:00
|
|
|
# best_arch = policy.genotype() # first version
|
|
|
|
best_arch = max(trace, key=lambda x: x[0])[1]
|
|
|
|
logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs[-1], time.time()-x_start_time))
|
|
|
|
info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
|
|
|
|
logger.log('{:}'.format(info))
|
|
|
|
logger.log('-'*100)
|
|
|
|
logger.close()
|
|
|
|
|
2020-07-13 13:35:13 +02:00
|
|
|
return logger.log_dir, current_best_index, total_costs
|
2020-07-13 05:43:10 +02:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser("The REINFORCE Algorithm")
|
|
|
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
|
|
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
|
|
|
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
|
|
|
parser.add_argument('--learning_rate', type=float, help='The learning rate for REINFORCE.')
|
2020-07-13 12:04:52 +02:00
|
|
|
parser.add_argument('--EMA_momentum', type=float, default=0.9, help='The momentum value for EMA.')
|
|
|
|
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
|
|
|
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
2020-07-13 05:43:10 +02:00
|
|
|
# log
|
|
|
|
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
|
|
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
|
|
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
2020-07-13 12:04:52 +02:00
|
|
|
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
2020-07-13 05:43:10 +02:00
|
|
|
args = parser.parse_args()
|
|
|
|
|
2020-07-30 15:07:11 +02:00
|
|
|
api = create(None, args.search_space, verbose=False)
|
2020-07-13 05:43:10 +02:00
|
|
|
|
|
|
|
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'REINFORCE-{:}'.format(args.learning_rate))
|
|
|
|
print('save-dir : {:}'.format(args.save_dir))
|
|
|
|
|
|
|
|
if args.rand_seed < 0:
|
2020-07-13 13:35:13 +02:00
|
|
|
save_dir, all_info = None, collections.OrderedDict()
|
2020-07-13 05:43:10 +02:00
|
|
|
for i in range(args.loops_if_rand):
|
|
|
|
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand))
|
|
|
|
args.rand_seed = random.randint(1, 100000)
|
|
|
|
save_dir, all_archs, all_total_times = main(args, api)
|
|
|
|
all_info[i] = {'all_archs': all_archs,
|
|
|
|
'all_total_times': all_total_times}
|
|
|
|
save_path = save_dir / 'results.pth'
|
|
|
|
print('save into {:}'.format(save_path))
|
|
|
|
torch.save(all_info, save_path)
|
|
|
|
else:
|
|
|
|
main(args, api)
|