2021-03-03 14:57:48 +01:00
|
|
|
##################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 #
|
|
|
|
##################################################
|
2021-02-25 09:24:56 +01:00
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
import copy
|
|
|
|
from functools import partial
|
|
|
|
from sklearn.metrics import roc_auc_score, mean_squared_error
|
|
|
|
from typing import Optional
|
|
|
|
import logging
|
|
|
|
|
|
|
|
from qlib.utils import (
|
|
|
|
unpack_archive_with_buffer,
|
|
|
|
save_multiple_parts_file,
|
|
|
|
create_save_path,
|
|
|
|
drop_nan_by_y_index,
|
|
|
|
)
|
|
|
|
from qlib.log import get_module_logger, TimeInspector
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.optim as optim
|
|
|
|
|
2021-03-03 14:57:48 +01:00
|
|
|
import layers as xlayers
|
2021-02-25 09:24:56 +01:00
|
|
|
|
|
|
|
from qlib.model.base import Model
|
|
|
|
from qlib.data.dataset import DatasetH
|
|
|
|
from qlib.data.dataset.handler import DataHandlerLP
|
|
|
|
|
|
|
|
|
|
|
|
class QuantTransformer(Model):
|
|
|
|
"""Transformer-based Quant Model
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
d_feat=6,
|
|
|
|
hidden_size=64,
|
|
|
|
num_layers=2,
|
|
|
|
dropout=0.0,
|
|
|
|
n_epochs=200,
|
|
|
|
lr=0.001,
|
|
|
|
metric="",
|
|
|
|
batch_size=2000,
|
|
|
|
early_stop=20,
|
|
|
|
loss="mse",
|
|
|
|
optimizer="adam",
|
|
|
|
GPU=0,
|
|
|
|
seed=None,
|
|
|
|
**kwargs
|
|
|
|
):
|
|
|
|
# Set logger.
|
|
|
|
self.logger = get_module_logger("QuantTransformer")
|
|
|
|
self.logger.info("QuantTransformer pytorch version...")
|
|
|
|
|
|
|
|
# set hyper-parameters.
|
|
|
|
self.d_feat = d_feat
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.num_layers = num_layers
|
|
|
|
self.dropout = dropout
|
|
|
|
self.n_epochs = n_epochs
|
|
|
|
self.lr = lr
|
|
|
|
self.metric = metric
|
|
|
|
self.batch_size = batch_size
|
|
|
|
self.early_stop = early_stop
|
|
|
|
self.optimizer = optimizer.lower()
|
|
|
|
self.loss = loss
|
|
|
|
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() else "cpu")
|
|
|
|
self.use_gpu = torch.cuda.is_available()
|
|
|
|
self.seed = seed
|
|
|
|
|
|
|
|
self.logger.info(
|
|
|
|
"GRU parameters setting:"
|
|
|
|
"\nd_feat : {}"
|
|
|
|
"\nhidden_size : {}"
|
|
|
|
"\nnum_layers : {}"
|
|
|
|
"\ndropout : {}"
|
|
|
|
"\nn_epochs : {}"
|
|
|
|
"\nlr : {}"
|
|
|
|
"\nmetric : {}"
|
|
|
|
"\nbatch_size : {}"
|
|
|
|
"\nearly_stop : {}"
|
|
|
|
"\noptimizer : {}"
|
|
|
|
"\nloss_type : {}"
|
|
|
|
"\nvisible_GPU : {}"
|
|
|
|
"\nuse_GPU : {}"
|
|
|
|
"\nseed : {}".format(
|
|
|
|
d_feat,
|
|
|
|
hidden_size,
|
|
|
|
num_layers,
|
|
|
|
dropout,
|
|
|
|
n_epochs,
|
|
|
|
lr,
|
|
|
|
metric,
|
|
|
|
batch_size,
|
|
|
|
early_stop,
|
|
|
|
optimizer.lower(),
|
|
|
|
loss,
|
|
|
|
GPU,
|
|
|
|
self.use_gpu,
|
|
|
|
seed,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
if self.seed is not None:
|
|
|
|
np.random.seed(self.seed)
|
|
|
|
torch.manual_seed(self.seed)
|
|
|
|
|
|
|
|
self.model = TransformerModel(d_feat=self.d_feat)
|
|
|
|
if optimizer.lower() == "adam":
|
|
|
|
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
|
|
|
|
elif optimizer.lower() == "gd":
|
|
|
|
self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.lr)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError("optimizer {:} is not supported!".format(optimizer))
|
|
|
|
|
|
|
|
self.fitted = False
|
|
|
|
self.model.to(self.device)
|
|
|
|
|
|
|
|
def mse(self, pred, label):
|
|
|
|
loss = (pred - label) ** 2
|
|
|
|
return torch.mean(loss)
|
|
|
|
|
|
|
|
def loss_fn(self, pred, label):
|
|
|
|
mask = ~torch.isnan(label)
|
|
|
|
|
|
|
|
if self.loss == "mse":
|
|
|
|
return self.mse(pred[mask], label[mask])
|
|
|
|
|
|
|
|
raise ValueError("unknown loss `%s`" % self.loss)
|
|
|
|
|
|
|
|
def metric_fn(self, pred, label):
|
|
|
|
|
|
|
|
mask = torch.isfinite(label)
|
|
|
|
|
|
|
|
if self.metric == "" or self.metric == "loss":
|
|
|
|
return -self.loss_fn(pred[mask], label[mask])
|
|
|
|
|
|
|
|
raise ValueError("unknown metric `%s`" % self.metric)
|
|
|
|
|
|
|
|
def train_epoch(self, x_train, y_train):
|
|
|
|
|
|
|
|
x_train_values = x_train.values
|
|
|
|
y_train_values = np.squeeze(y_train.values)
|
|
|
|
|
|
|
|
self.model.train()
|
|
|
|
|
|
|
|
indices = np.arange(len(x_train_values))
|
|
|
|
np.random.shuffle(indices)
|
|
|
|
|
|
|
|
for i in range(len(indices))[:: self.batch_size]:
|
|
|
|
|
|
|
|
if len(indices) - i < self.batch_size:
|
|
|
|
break
|
|
|
|
|
|
|
|
feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
|
|
|
|
label = torch.from_numpy(y_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
|
|
|
|
|
|
|
|
pred = self.model(feature)
|
|
|
|
loss = self.loss_fn(pred, label)
|
|
|
|
|
|
|
|
self.train_optimizer.zero_grad()
|
|
|
|
loss.backward()
|
|
|
|
torch.nn.utils.clip_grad_value_(self.model.parameters(), 3.0)
|
|
|
|
self.train_optimizer.step()
|
|
|
|
|
|
|
|
def test_epoch(self, data_x, data_y):
|
|
|
|
|
|
|
|
# prepare training data
|
|
|
|
x_values = data_x.values
|
|
|
|
y_values = np.squeeze(data_y.values)
|
|
|
|
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
scores = []
|
|
|
|
losses = []
|
|
|
|
|
|
|
|
indices = np.arange(len(x_values))
|
|
|
|
|
|
|
|
for i in range(len(indices))[:: self.batch_size]:
|
|
|
|
|
|
|
|
if len(indices) - i < self.batch_size:
|
|
|
|
break
|
|
|
|
|
|
|
|
feature = torch.from_numpy(x_values[indices[i : i + self.batch_size]]).float().to(self.device)
|
|
|
|
label = torch.from_numpy(y_values[indices[i : i + self.batch_size]]).float().to(self.device)
|
|
|
|
|
|
|
|
pred = self.model(feature)
|
|
|
|
loss = self.loss_fn(pred, label)
|
|
|
|
losses.append(loss.item())
|
|
|
|
|
|
|
|
score = self.metric_fn(pred, label)
|
|
|
|
scores.append(score.item())
|
|
|
|
|
|
|
|
return np.mean(losses), np.mean(scores)
|
|
|
|
|
|
|
|
def fit(
|
|
|
|
self,
|
|
|
|
dataset: DatasetH,
|
|
|
|
evals_result=dict(),
|
|
|
|
verbose=True,
|
|
|
|
save_path=None,
|
|
|
|
):
|
|
|
|
|
|
|
|
df_train, df_valid, df_test = dataset.prepare(
|
|
|
|
["train", "valid", "test"],
|
|
|
|
col_set=["feature", "label"],
|
|
|
|
data_key=DataHandlerLP.DK_L,
|
|
|
|
)
|
|
|
|
|
|
|
|
x_train, y_train = df_train["feature"], df_train["label"]
|
|
|
|
x_valid, y_valid = df_valid["feature"], df_valid["label"]
|
|
|
|
|
|
|
|
if save_path == None:
|
|
|
|
save_path = create_save_path(save_path)
|
|
|
|
stop_steps = 0
|
|
|
|
train_loss = 0
|
|
|
|
best_score = -np.inf
|
|
|
|
best_epoch = 0
|
|
|
|
evals_result["train"] = []
|
|
|
|
evals_result["valid"] = []
|
|
|
|
|
|
|
|
# train
|
|
|
|
self.logger.info("training...")
|
|
|
|
self.fitted = True
|
|
|
|
|
|
|
|
for step in range(self.n_epochs):
|
|
|
|
self.logger.info("Epoch%d:", step)
|
|
|
|
self.logger.info("training...")
|
|
|
|
self.train_epoch(x_train, y_train)
|
|
|
|
self.logger.info("evaluating...")
|
|
|
|
train_loss, train_score = self.test_epoch(x_train, y_train)
|
|
|
|
val_loss, val_score = self.test_epoch(x_valid, y_valid)
|
|
|
|
self.logger.info("train %.6f, valid %.6f" % (train_score, val_score))
|
|
|
|
evals_result["train"].append(train_score)
|
|
|
|
evals_result["valid"].append(val_score)
|
|
|
|
|
|
|
|
if val_score > best_score:
|
|
|
|
best_score = val_score
|
|
|
|
stop_steps = 0
|
|
|
|
best_epoch = step
|
|
|
|
best_param = copy.deepcopy(self.model.state_dict())
|
|
|
|
else:
|
|
|
|
stop_steps += 1
|
|
|
|
if stop_steps >= self.early_stop:
|
|
|
|
self.logger.info("early stop")
|
|
|
|
break
|
|
|
|
|
|
|
|
self.logger.info("best score: %.6lf @ %d" % (best_score, best_epoch))
|
|
|
|
self.model.load_state_dict(best_param)
|
|
|
|
torch.save(best_param, save_path)
|
|
|
|
|
|
|
|
if self.use_gpu:
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
def predict(self, dataset):
|
2021-03-03 14:57:48 +01:00
|
|
|
|
2021-02-25 09:24:56 +01:00
|
|
|
if not self.fitted:
|
|
|
|
raise ValueError("model is not fitted yet!")
|
|
|
|
|
|
|
|
x_test = dataset.prepare("test", col_set="feature")
|
|
|
|
index = x_test.index
|
|
|
|
self.model.eval()
|
|
|
|
x_values = x_test.values
|
|
|
|
sample_num = x_values.shape[0]
|
|
|
|
preds = []
|
|
|
|
|
|
|
|
for begin in range(sample_num)[:: self.batch_size]:
|
|
|
|
|
|
|
|
if sample_num - begin < self.batch_size:
|
|
|
|
end = sample_num
|
|
|
|
else:
|
|
|
|
end = begin + self.batch_size
|
|
|
|
|
|
|
|
x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device)
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
if self.use_gpu:
|
|
|
|
pred = self.model(x_batch).detach().cpu().numpy()
|
|
|
|
else:
|
|
|
|
pred = self.model(x_batch).detach().numpy()
|
|
|
|
|
|
|
|
preds.append(pred)
|
|
|
|
|
|
|
|
return pd.Series(np.concatenate(preds), index=index)
|
|
|
|
|
|
|
|
|
|
|
|
# Real Model
|
|
|
|
|
|
|
|
|
2021-03-03 14:57:48 +01:00
|
|
|
class MLP(nn.Module):
|
2021-02-25 09:24:56 +01:00
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
2021-03-03 14:57:48 +01:00
|
|
|
super(MLP, self).__init__()
|
2021-02-25 09:24:56 +01:00
|
|
|
out_features = out_features or in_features
|
|
|
|
hidden_features = hidden_features or in_features
|
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
|
|
self.act = act_layer()
|
|
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.fc1(x)
|
|
|
|
x = self.act(x)
|
|
|
|
x = self.drop(x)
|
|
|
|
x = self.fc2(x)
|
|
|
|
x = self.drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
2021-03-03 14:57:48 +01:00
|
|
|
|
2021-02-25 09:24:56 +01:00
|
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
2021-03-03 14:57:48 +01:00
|
|
|
super(Attention, self).__init__()
|
2021-02-25 09:24:56 +01:00
|
|
|
self.num_heads = num_heads
|
|
|
|
head_dim = dim // num_heads
|
|
|
|
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
|
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
B, N, C = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
|
|
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
|
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
2021-03-03 14:57:48 +01:00
|
|
|
super(Block, self).__init__()
|
2021-02-25 09:24:56 +01:00
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.attn = Attention(
|
|
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
|
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
2021-03-03 14:57:48 +01:00
|
|
|
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
2021-02-25 09:24:56 +01:00
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
2021-03-03 14:57:48 +01:00
|
|
|
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
2021-02-25 09:24:56 +01:00
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class SimpleEmbed(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, d_feat, embed_dim):
|
|
|
|
super(SimpleEmbed, self).__init__()
|
2021-03-03 14:57:48 +01:00
|
|
|
self.d_feat = d_feat
|
2021-02-25 09:24:56 +01:00
|
|
|
self.proj = nn.Linear(d_feat, embed_dim)
|
|
|
|
|
|
|
|
def forward(self, x):
|
2021-03-03 14:57:48 +01:00
|
|
|
x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T]
|
|
|
|
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
|
|
|
|
out = self.proj(x)
|
|
|
|
return out
|
2021-02-25 09:24:56 +01:00
|
|
|
|
|
|
|
|
|
|
|
class TransformerModel(nn.Module):
|
2021-03-03 14:57:48 +01:00
|
|
|
|
2021-02-25 09:24:56 +01:00
|
|
|
def __init__(self,
|
|
|
|
d_feat: int,
|
|
|
|
embed_dim: int = 64,
|
|
|
|
depth: int = 4,
|
|
|
|
num_heads: int = 4,
|
|
|
|
mlp_ratio: float = 4.,
|
|
|
|
qkv_bias: bool = True,
|
|
|
|
qk_scale: Optional[float] = None,
|
|
|
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
d_feat (int, tuple): input image size
|
|
|
|
embed_dim (int): embedding dimension
|
|
|
|
depth (int): depth of transformer
|
|
|
|
num_heads (int): number of attention heads
|
|
|
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
|
|
|
qkv_bias (bool): enable bias for qkv if True
|
|
|
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
|
|
|
drop_rate (float): dropout rate
|
|
|
|
attn_drop_rate (float): attention dropout rate
|
|
|
|
drop_path_rate (float): stochastic depth rate
|
|
|
|
norm_layer: (nn.Module): normalization layer
|
|
|
|
"""
|
|
|
|
super(TransformerModel, self).__init__()
|
|
|
|
self.embed_dim = embed_dim
|
|
|
|
self.num_features = embed_dim
|
|
|
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
|
|
|
|
|
|
|
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
|
|
|
|
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
2021-03-03 14:57:48 +01:00
|
|
|
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65)
|
2021-02-25 09:24:56 +01:00
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
|
|
self.blocks = nn.ModuleList([
|
|
|
|
Block(
|
|
|
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
|
|
|
|
for i in range(depth)])
|
|
|
|
self.norm = norm_layer(embed_dim)
|
|
|
|
|
|
|
|
# regression head
|
|
|
|
self.head = nn.Linear(self.num_features, 1)
|
|
|
|
|
2021-03-03 14:57:48 +01:00
|
|
|
xlayers.trunc_normal_(self.cls_token, std=.02)
|
2021-02-25 09:24:56 +01:00
|
|
|
self.apply(self._init_weights)
|
|
|
|
|
|
|
|
def _init_weights(self, m):
|
|
|
|
if isinstance(m, nn.Linear):
|
2021-03-03 14:57:48 +01:00
|
|
|
xlayers.trunc_normal_(m.weight, std=.02)
|
2021-02-25 09:24:56 +01:00
|
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
elif isinstance(m, nn.LayerNorm):
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
2021-03-03 14:57:48 +01:00
|
|
|
batch, flatten_size = x.shape
|
|
|
|
feats = self.input_embed(x) # batch * 60 * 64
|
2021-02-25 09:24:56 +01:00
|
|
|
|
2021-03-03 14:57:48 +01:00
|
|
|
cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
|
|
|
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
|
|
|
|
feats_w_tp = self.pos_embed(feats_w_ct)
|
|
|
|
feats_w_tp = self.pos_drop(feats_w_tp)
|
2021-02-25 09:24:56 +01:00
|
|
|
|
2021-03-03 14:57:48 +01:00
|
|
|
xfeats = feats_w_tp
|
|
|
|
for block in self.blocks:
|
|
|
|
xfeats = block(xfeats)
|
2021-02-25 09:24:56 +01:00
|
|
|
|
2021-03-03 14:57:48 +01:00
|
|
|
xfeats = self.norm(xfeats)[:, 0]
|
|
|
|
return xfeats
|
2021-02-25 09:24:56 +01:00
|
|
|
|
|
|
|
def forward(self, x):
|
2021-03-03 14:57:48 +01:00
|
|
|
feats = self.forward_features(x)
|
|
|
|
predicts = self.head(feats).squeeze(-1)
|
|
|
|
return predicts
|