2021-03-17 11:06:29 +01:00
|
|
|
import torch.nn as nn
|
2021-03-18 08:04:14 +01:00
|
|
|
from torch.nn.parameter import Parameter
|
2021-03-17 11:06:29 +01:00
|
|
|
from typing import Optional
|
|
|
|
|
2021-03-18 08:04:14 +01:00
|
|
|
|
|
|
|
class Linear(nn.Module):
|
|
|
|
"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
|
|
|
|
"""
|
|
|
|
__constants__ = ['in_features', 'out_features']
|
|
|
|
in_features: int
|
|
|
|
out_features: int
|
|
|
|
weight: Tensor
|
|
|
|
|
|
|
|
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
|
|
|
|
super(Linear, self).__init__()
|
|
|
|
self.in_features = in_features
|
|
|
|
self.out_features = out_features
|
|
|
|
self.weight = Parameter(torch.Tensor(out_features, in_features))
|
|
|
|
if bias:
|
|
|
|
self.bias = Parameter(torch.Tensor(out_features))
|
|
|
|
else:
|
|
|
|
self.register_parameter('bias', None)
|
|
|
|
self.reset_parameters()
|
|
|
|
|
|
|
|
def reset_parameters(self) -> None:
|
|
|
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
|
|
|
if self.bias is not None:
|
|
|
|
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
|
|
|
|
bound = 1 / math.sqrt(fan_in)
|
|
|
|
init.uniform_(self.bias, -bound, bound)
|
|
|
|
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
|
|
return F.linear(input, self.weight, self.bias)
|
|
|
|
|
|
|
|
def extra_repr(self) -> str:
|
|
|
|
return 'in_features={}, out_features={}, bias={}'.format(
|
|
|
|
self.in_features, self.out_features, self.bias is not None
|
|
|
|
)
|
|
|
|
|
|
|
|
class SuperMLP(nn.Module):
|
2021-03-17 11:06:29 +01:00
|
|
|
# MLP: FC -> Activation -> Drop -> FC -> Drop
|
|
|
|
def __init__(self, in_features, hidden_features: Optional[int] = None,
|
|
|
|
out_features: Optional[int] = None,
|
|
|
|
act_layer=nn.GELU,
|
|
|
|
drop: Optional[float] = None):
|
|
|
|
super(MLP, self).__init__()
|
|
|
|
out_features = out_features or in_features
|
|
|
|
hidden_features = hidden_features or in_features
|
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
|
|
self.act = act_layer()
|
|
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
|
|
self.drop = nn.Dropout(drop or 0)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.fc1(x)
|
|
|
|
x = self.act(x)
|
|
|
|
x = self.drop(x)
|
|
|
|
x = self.fc2(x)
|
|
|
|
x = self.drop(x)
|
|
|
|
return x
|