autodl-projects/exps/NATS-Bench/draw-correlations.py

98 lines
3.9 KiB
Python
Raw Normal View History

###############################################################
2021-01-25 14:48:14 +01:00
# NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
###############################################################
# Usage: python exps/NATS-Bench/draw-correlations.py #
###############################################################
import os, gc, sys, time, scipy, torch, argparse
import numpy as np
from typing import List, Text, Dict, Any
from shutil import copyfile
from collections import defaultdict, OrderedDict
2021-03-17 10:25:58 +01:00
from copy import deepcopy
from pathlib import Path
import matplotlib
import seaborn as sns
2021-03-17 10:25:58 +01:00
matplotlib.use("agg")
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
2021-03-17 10:25:58 +01:00
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import dict2config, load_config
from nats_bench import create
from log_utils import time_string
def get_valid_test_acc(api, arch, dataset):
2021-03-17 10:25:58 +01:00
is_size_space = api.search_space_name == "size"
if dataset == "cifar10":
xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
test_acc = xinfo["test-accuracy"]
xinfo = api.get_more_info(arch, dataset="cifar10-valid", hp=90 if is_size_space else 200, is_random=False)
valid_acc = xinfo["valid-accuracy"]
else:
xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
valid_acc = xinfo["valid-accuracy"]
test_acc = xinfo["test-accuracy"]
return valid_acc, test_acc, "validation = {:.2f}, test = {:.2f}\n".format(valid_acc, test_acc)
def compute_kendalltau(vectori, vectorj):
2021-03-17 10:25:58 +01:00
# indexes = list(range(len(vectori)))
# rank_1 = sorted(indexes, key=lambda i: vectori[i])
# rank_2 = sorted(indexes, key=lambda i: vectorj[i])
# import pdb; pdb.set_trace()
coef, p = scipy.stats.kendalltau(vectori, vectorj)
return coef
def compute_spearmanr(vectori, vectorj):
2021-03-17 10:25:58 +01:00
coef, p = scipy.stats.spearmanr(vectori, vectorj)
return coef
2021-03-17 10:25:58 +01:00
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--save_dir", type=str, default="output/vis-nas-bench/nas-algos", help="Folder to save checkpoints and log."
)
parser.add_argument("--search_space", type=str, choices=["tss", "sss"], help="Choose the search space.")
args = parser.parse_args()
2021-03-17 10:25:58 +01:00
save_dir = Path(args.save_dir)
2021-03-17 10:25:58 +01:00
api = create(None, "tss", fast_mode=True, verbose=False)
indexes = list(range(1, 10000, 300))
scores_1 = []
scores_2 = []
for index in indexes:
valid_acc, test_acc, _ = get_valid_test_acc(api, index, "cifar10")
scores_1.append(valid_acc)
scores_2.append(test_acc)
correlation = compute_kendalltau(scores_1, scores_2)
print("The kendall tau correlation of {:} samples : {:}".format(len(indexes), correlation))
correlation = compute_spearmanr(scores_1, scores_2)
print("The spearmanr correlation of {:} samples : {:}".format(len(indexes), correlation))
# scores_1 = ['{:.2f}'.format(x) for x in scores_1]
# scores_2 = ['{:.2f}'.format(x) for x in scores_2]
# print(', '.join(scores_1))
# print(', '.join(scores_2))
2021-03-17 10:25:58 +01:00
dpi, width, height = 250, 1000, 1000
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize = 14, 14
2021-03-17 10:25:58 +01:00
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.scatter(scores_1, scores_2, marker="^", s=0.5, c="tab:green", alpha=0.8)
2021-03-17 10:25:58 +01:00
save_path = "/Users/xuanyidong/Desktop/test-temp-rank.png"
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
plt.close("all")