Add SuperSequential
This commit is contained in:
		
							
								
								
									
										2
									
								
								.github/workflows/super_model_test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/super_model_test.yml
									
									
									
									
										vendored
									
									
								
							| @@ -29,5 +29,5 @@ jobs: | ||||
|           python -m pip install pytest numpy | ||||
|           python -m pip install parameterized | ||||
|           python -m pip install torch torchvision torchaudio | ||||
|           python -m pytest ./tests/test_super_model.py -s | ||||
|           python -m pytest ./tests/test_super_*.py -s | ||||
|         shell: bash | ||||
|   | ||||
| @@ -16,3 +16,8 @@ python -m black __init__.py -l 120 | ||||
|  | ||||
| pytest -W ignore::DeprecationWarning qlib/tests/test_all_pipeline.py | ||||
| ``` | ||||
|  | ||||
|  | ||||
| ``` | ||||
| conda update --all | ||||
| ``` | ||||
|   | ||||
							
								
								
									
										111
									
								
								lib/xlayers/super_container.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										111
									
								
								lib/xlayers/super_container.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,111 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| import torch | ||||
|  | ||||
| from itertools import islice | ||||
| import operator | ||||
|  | ||||
| from collections import OrderedDict | ||||
| from typing import Optional, Union, Callable, TypeVar, Iterator | ||||
|  | ||||
| import spaces | ||||
| from .super_module import SuperModule | ||||
|  | ||||
|  | ||||
| T = TypeVar("T", bound=SuperModule) | ||||
|  | ||||
|  | ||||
| class SuperSequential(SuperModule): | ||||
|     """A sequential container wrapped with 'Super' ability. | ||||
|  | ||||
|     Modules will be added to it in the order they are passed in the constructor. | ||||
|     Alternatively, an ordered dict of modules can also be passed in. | ||||
|     To make it easier to understand, here is a small example:: | ||||
|         # Example of using Sequential | ||||
|         model = SuperSequential( | ||||
|                   nn.Conv2d(1,20,5), | ||||
|                   nn.ReLU(), | ||||
|                   nn.Conv2d(20,64,5), | ||||
|                   nn.ReLU() | ||||
|                 ) | ||||
|         # Example of using Sequential with OrderedDict | ||||
|         model = nn.Sequential(OrderedDict([ | ||||
|                   ('conv1', nn.Conv2d(1,20,5)), | ||||
|                   ('relu1', nn.ReLU()), | ||||
|                   ('conv2', nn.Conv2d(20,64,5)), | ||||
|                   ('relu2', nn.ReLU()) | ||||
|                 ])) | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, *args): | ||||
|         super(SuperSequential, self).__init__() | ||||
|         if len(args) == 1 and isinstance(args[0], OrderedDict): | ||||
|             for key, module in args[0].items(): | ||||
|                 self.add_module(key, module) | ||||
|         else: | ||||
|             if not isinstance(args, (list, tuple)): | ||||
|                 raise ValueError("Invalid input type: {:}".format(type(args))) | ||||
|             for idx, module in enumerate(args): | ||||
|                 self.add_module(str(idx), module) | ||||
|  | ||||
|     def _get_item_by_idx(self, iterator, idx) -> T: | ||||
|         """Get the idx-th item of the iterator""" | ||||
|         size = len(self) | ||||
|         idx = operator.index(idx) | ||||
|         if not -size <= idx < size: | ||||
|             raise IndexError("index {} is out of range".format(idx)) | ||||
|         idx %= size | ||||
|         return next(islice(iterator, idx, None)) | ||||
|  | ||||
|     def __getitem__(self, idx) -> Union["SuperSequential", T]: | ||||
|         if isinstance(idx, slice): | ||||
|             return self.__class__(OrderedDict(list(self._modules.items())[idx])) | ||||
|         else: | ||||
|             return self._get_item_by_idx(self._modules.values(), idx) | ||||
|  | ||||
|     def __setitem__(self, idx: int, module: SuperModule) -> None: | ||||
|         key: str = self._get_item_by_idx(self._modules.keys(), idx) | ||||
|         return setattr(self, key, module) | ||||
|  | ||||
|     def __delitem__(self, idx: Union[slice, int]) -> None: | ||||
|         if isinstance(idx, slice): | ||||
|             for key in list(self._modules.keys())[idx]: | ||||
|                 delattr(self, key) | ||||
|         else: | ||||
|             key = self._get_item_by_idx(self._modules.keys(), idx) | ||||
|             delattr(self, key) | ||||
|  | ||||
|     def __len__(self) -> int: | ||||
|         return len(self._modules) | ||||
|  | ||||
|     def __dir__(self): | ||||
|         keys = super(SuperSequential, self).__dir__() | ||||
|         keys = [key for key in keys if not key.isdigit()] | ||||
|         return keys | ||||
|  | ||||
|     def __iter__(self) -> Iterator[SuperModule]: | ||||
|         return iter(self._modules.values()) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         root_node = spaces.VirtualNode(id(self)) | ||||
|         for index, module in enumerate(self): | ||||
|             space = module.abstract_search_space | ||||
|             if not spaces.is_determined(space): | ||||
|                 root_node.append(str(index), space) | ||||
|         return root_node | ||||
|  | ||||
|     def apply_candidate(self, abstract_child: spaces.VirtualNode): | ||||
|         super(SuperSequential, self).apply_candidate(abstract_child) | ||||
|         for index in range(len(self)): | ||||
|             if str(index) in abstract_child: | ||||
|                 self.__getitem__(index).apply_candidate(abstract_child[str(index)]) | ||||
|  | ||||
|     def forward_candidate(self, input): | ||||
|         return self.forward_raw(input) | ||||
|  | ||||
|     def forward_raw(self, input): | ||||
|         for module in self: | ||||
|             input = module(input) | ||||
|         return input | ||||
| @@ -3,6 +3,7 @@ | ||||
| ##################################################### | ||||
| from .super_module import SuperRunMode | ||||
| from .super_module import SuperModule | ||||
| from .super_container import SuperSequential | ||||
| from .super_linear import SuperLinear | ||||
| from .super_linear import SuperMLPv1, SuperMLPv2 | ||||
| from .super_norm import SuperLayerNorm1D | ||||
|   | ||||
| @@ -1,6 +1,8 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest tests/test_basic_space.py -s               # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
| import pytest | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest ./tests/test_super_model.py -s             # | ||||
| # pytest ./tests/test_super_att.py -s               # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
|   | ||||
							
								
								
									
										68
									
								
								tests/test_super_container.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										68
									
								
								tests/test_super_container.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,68 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest ./tests/test_super_container.py -s         # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
| import pytest | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / "lib").resolve() | ||||
| print("library path: {:}".format(lib_dir)) | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| import torch | ||||
| from xlayers import super_core | ||||
| import spaces | ||||
|  | ||||
|  | ||||
| """Test the super container layers.""" | ||||
|  | ||||
|  | ||||
| def _internal_func(inputs, model): | ||||
|     outputs = model(inputs) | ||||
|     abstract_space = model.abstract_search_space | ||||
|     print( | ||||
|         "The abstract search space for SuperAttention is:\n{:}".format(abstract_space) | ||||
|     ) | ||||
|     abstract_space.clean_last() | ||||
|     abstract_child = abstract_space.random(reuse_last=True) | ||||
|     print("The abstract child program is:\n{:}".format(abstract_child)) | ||||
|     model.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||
|     model.apply_candidate(abstract_child) | ||||
|     outputs = model(inputs) | ||||
|     return abstract_child, outputs | ||||
|  | ||||
|  | ||||
| def _create_stel(input_dim, output_dim): | ||||
|     return super_core.SuperTransformerEncoderLayer( | ||||
|         input_dim, | ||||
|         output_dim, | ||||
|         num_heads=spaces.Categorical(2, 4, 6), | ||||
|         mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), | ||||
|     ) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("batch", (1, 2, 4)) | ||||
| @pytest.mark.parametrize("seq_dim", (1, 10, 30)) | ||||
| @pytest.mark.parametrize("input_dim", (6, 12, 24, 27)) | ||||
| def test_super_sequential(batch, seq_dim, input_dim): | ||||
|     out1_dim = spaces.Categorical(12, 24, 36) | ||||
|     out2_dim = spaces.Categorical(24, 36, 48) | ||||
|     out3_dim = spaces.Categorical(36, 72, 100) | ||||
|     layer1 = _create_stel(input_dim, out1_dim) | ||||
|     layer2 = _create_stel(out1_dim, out2_dim) | ||||
|     layer3 = _create_stel(out2_dim, out3_dim) | ||||
|     model = super_core.SuperSequential(layer1, layer2, layer3) | ||||
|     print(model) | ||||
|     model.apply_verbose(True) | ||||
|     inputs = torch.rand(batch, seq_dim, input_dim) | ||||
|     abstract_child, outputs = _internal_func(inputs, model) | ||||
|     output_shape = ( | ||||
|         batch, | ||||
|         seq_dim, | ||||
|         out3_dim.abstract(reuse_last=True).random(reuse_last=True).value, | ||||
|     ) | ||||
|     assert tuple(outputs.shape) == output_shape | ||||
		Reference in New Issue
	
	Block a user