Update REA and REINFORCE
This commit is contained in:
parent
88a5be1368
commit
041a9aa4a3
@ -3,13 +3,13 @@
|
|||||||
##################################################################
|
##################################################################
|
||||||
# Regularized Evolution for Image Classifier Architecture Search #
|
# Regularized Evolution for Image Classifier Architecture Search #
|
||||||
##################################################################
|
##################################################################
|
||||||
# python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
# python ./exps/algos-v2/REA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||||
# python ./exps/algos-v2/R_EA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
# python ./exps/algos-v2/REA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||||
# python ./exps/algos-v2/R_EA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
# python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||||
# python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
# python ./exps/algos-v2/REA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||||
#
|
# python ./exps/algos-v2/REA.py --dataset cifar100 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||||
#
|
# python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||||
#
|
##################################################################
|
||||||
import os, sys, time, glob, random, argparse
|
import os, sys, time, glob, random, argparse
|
||||||
import numpy as np, collections
|
import numpy as np, collections
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
@ -236,12 +236,12 @@ if __name__ == '__main__':
|
|||||||
parser.add_argument('--ea_population', type=int, help='The population size in EA.')
|
parser.add_argument('--ea_population', type=int, help='The population size in EA.')
|
||||||
parser.add_argument('--ea_sample_size', type=int, help='The sample size in EA.')
|
parser.add_argument('--ea_sample_size', type=int, help='The sample size in EA.')
|
||||||
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
||||||
|
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||||
# log
|
# log
|
||||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||||
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
#if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
|
||||||
|
|
||||||
if args.search_space == 'tss':
|
if args.search_space == 'tss':
|
||||||
api = NASBench201API(verbose=False)
|
api = NASBench201API(verbose=False)
|
||||||
@ -250,17 +250,19 @@ if __name__ == '__main__':
|
|||||||
else:
|
else:
|
||||||
raise ValueError('Invalid search space : {:}'.format(args.search_space))
|
raise ValueError('Invalid search space : {:}'.format(args.search_space))
|
||||||
|
|
||||||
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), 'R-EA-SS{:}'.format(args.ea_sample_size))
|
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'R-EA-SS{:}'.format(args.ea_sample_size))
|
||||||
print('save-dir : {:}'.format(args.save_dir))
|
print('save-dir : {:}'.format(args.save_dir))
|
||||||
|
|
||||||
if args.rand_seed < 0:
|
if args.rand_seed < 0:
|
||||||
save_dir, all_info, num = None, {}, 500
|
save_dir, all_info = None, {}
|
||||||
for i in range(num):
|
for i in range(args.loops_if_rand):
|
||||||
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
|
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand))
|
||||||
args.rand_seed = random.randint(1, 100000)
|
args.rand_seed = random.randint(1, 100000)
|
||||||
save_dir, all_archs, all_total_times = main(args, api)
|
save_dir, all_archs, all_total_times = main(args, api)
|
||||||
all_info[i] = {'all_archs': all_archs,
|
all_info[i] = {'all_archs': all_archs,
|
||||||
'all_total_times': all_total_times}
|
'all_total_times': all_total_times}
|
||||||
torch.save(all_info, save_dir / 'results.pth')
|
save_path = save_dir / 'results.pth'
|
||||||
|
print('save into {:}'.format(save_path))
|
||||||
|
torch.save(all_info, save_path)
|
||||||
else:
|
else:
|
||||||
main(args, api)
|
main(args, api)
|
1
exps/algos-v2/README.md
Normal file
1
exps/algos-v2/README.md
Normal file
@ -0,0 +1 @@
|
|||||||
|
# Benchmarking NAS Algorithms
|
222
exps/algos-v2/reinforce.py
Normal file
222
exps/algos-v2/reinforce.py
Normal file
@ -0,0 +1,222 @@
|
|||||||
|
##################################################
|
||||||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
||||||
|
#####################################################################################################
|
||||||
|
# modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py #
|
||||||
|
#####################################################################################################
|
||||||
|
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --time_budget 12000 --learning_rate 0.001
|
||||||
|
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --time_budget 12000 --learning_rate 0.001
|
||||||
|
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --learning_rate 0.001
|
||||||
|
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --time_budget 12000 --learning_rate 0.001
|
||||||
|
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --time_budget 12000 --learning_rate 0.001
|
||||||
|
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --learning_rate 0.001
|
||||||
|
#####################################################################################################
|
||||||
|
import os, sys, time, glob, random, argparse
|
||||||
|
import numpy as np, collections
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.distributions import Categorical
|
||||||
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||||
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||||
|
from config_utils import load_config, dict2config, configure2str
|
||||||
|
from datasets import get_datasets, SearchDataset
|
||||||
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||||
|
from utils import get_model_infos, obtain_accuracy
|
||||||
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||||
|
from nas_201_api import NASBench201API, NASBench301API
|
||||||
|
from models import CellStructure, get_search_spaces
|
||||||
|
|
||||||
|
|
||||||
|
class PolicyTopology(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, search_space, max_nodes=4):
|
||||||
|
super(PolicyTopology, self).__init__()
|
||||||
|
self.max_nodes = max_nodes
|
||||||
|
self.search_space = deepcopy(search_space)
|
||||||
|
self.edge2index = {}
|
||||||
|
for i in range(1, max_nodes):
|
||||||
|
for j in range(i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
self.edge2index[ node_str ] = len(self.edge2index)
|
||||||
|
self.arch_parameters = nn.Parameter(1e-3*torch.randn(len(self.edge2index), len(search_space)))
|
||||||
|
|
||||||
|
def generate_arch(self, actions):
|
||||||
|
genotypes = []
|
||||||
|
for i in range(1, self.max_nodes):
|
||||||
|
xlist = []
|
||||||
|
for j in range(i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
op_name = self.search_space[ actions[ self.edge2index[ node_str ] ] ]
|
||||||
|
xlist.append((op_name, j))
|
||||||
|
genotypes.append( tuple(xlist) )
|
||||||
|
return CellStructure( genotypes )
|
||||||
|
|
||||||
|
def genotype(self):
|
||||||
|
genotypes = []
|
||||||
|
for i in range(1, self.max_nodes):
|
||||||
|
xlist = []
|
||||||
|
for j in range(i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
with torch.no_grad():
|
||||||
|
weights = self.arch_parameters[ self.edge2index[node_str] ]
|
||||||
|
op_name = self.search_space[ weights.argmax().item() ]
|
||||||
|
xlist.append((op_name, j))
|
||||||
|
genotypes.append( tuple(xlist) )
|
||||||
|
return CellStructure( genotypes )
|
||||||
|
|
||||||
|
def forward(self):
|
||||||
|
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||||
|
return alphas
|
||||||
|
|
||||||
|
|
||||||
|
class PolicySize(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, search_space):
|
||||||
|
super(PolicySize, self).__init__()
|
||||||
|
self.candidates = search_space['candidates']
|
||||||
|
self.numbers = search_space['numbers']
|
||||||
|
self.arch_parameters = nn.Parameter(1e-3*torch.randn(self.numbers, len(self.candidates)))
|
||||||
|
|
||||||
|
def generate_arch(self, actions):
|
||||||
|
channels = [str(self.candidates[i]) for i in actions]
|
||||||
|
return ':'.join(channels)
|
||||||
|
|
||||||
|
def genotype(self):
|
||||||
|
channels = []
|
||||||
|
for i in range(self.numbers):
|
||||||
|
index = self.arch_parameters[i].argmax().item()
|
||||||
|
channels.append(str(self.candidates[index]))
|
||||||
|
return ':'.join(channels)
|
||||||
|
|
||||||
|
def forward(self):
|
||||||
|
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||||
|
return alphas
|
||||||
|
|
||||||
|
|
||||||
|
class ExponentialMovingAverage(object):
|
||||||
|
"""Class that maintains an exponential moving average."""
|
||||||
|
|
||||||
|
def __init__(self, momentum):
|
||||||
|
self._numerator = 0
|
||||||
|
self._denominator = 0
|
||||||
|
self._momentum = momentum
|
||||||
|
|
||||||
|
def update(self, value):
|
||||||
|
self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value
|
||||||
|
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
|
||||||
|
|
||||||
|
def value(self):
|
||||||
|
"""Return the current value of the moving average"""
|
||||||
|
return self._numerator / self._denominator
|
||||||
|
|
||||||
|
|
||||||
|
def select_action(policy):
|
||||||
|
probs = policy()
|
||||||
|
m = Categorical(probs)
|
||||||
|
action = m.sample()
|
||||||
|
# policy.saved_log_probs.append(m.log_prob(action))
|
||||||
|
return m.log_prob(action), action.cpu().tolist()
|
||||||
|
|
||||||
|
|
||||||
|
def main(xargs, api):
|
||||||
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||||
|
torch.backends.cudnn.enabled = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.set_num_threads(xargs.workers)
|
||||||
|
prepare_seed(xargs.rand_seed)
|
||||||
|
logger = prepare_logger(args)
|
||||||
|
|
||||||
|
|
||||||
|
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
||||||
|
if xargs.search_space == 'tss':
|
||||||
|
policy = PolicyTopology(search_space)
|
||||||
|
else:
|
||||||
|
policy = PolicySize(search_space)
|
||||||
|
optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate)
|
||||||
|
#optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate)
|
||||||
|
eps = np.finfo(np.float32).eps.item()
|
||||||
|
baseline = ExponentialMovingAverage(xargs.EMA_momentum)
|
||||||
|
logger.log('policy : {:}'.format(policy))
|
||||||
|
logger.log('optimizer : {:}'.format(optimizer))
|
||||||
|
logger.log('eps : {:}'.format(eps))
|
||||||
|
|
||||||
|
# nas dataset load
|
||||||
|
logger.log('{:} use api : {:}'.format(time_string(), api))
|
||||||
|
|
||||||
|
# REINFORCE
|
||||||
|
x_start_time = time.time()
|
||||||
|
logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget))
|
||||||
|
total_steps, total_costs, trace = 0, [], []
|
||||||
|
while len(total_costs) == 0 or total_costs[-1] < xargs.time_budget:
|
||||||
|
start_time = time.time()
|
||||||
|
log_prob, action = select_action( policy )
|
||||||
|
arch = policy.generate_arch( action )
|
||||||
|
reward, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
|
||||||
|
trace.append((reward, arch))
|
||||||
|
total_costs.append(current_total_cost)
|
||||||
|
|
||||||
|
baseline.update(reward)
|
||||||
|
# calculate loss
|
||||||
|
policy_loss = ( -log_prob * (reward - baseline.value()) ).sum()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
policy_loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
# accumulate time
|
||||||
|
total_steps += 1
|
||||||
|
logger.log('step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(total_steps, baseline.value(), policy_loss.item(), policy.genotype()))
|
||||||
|
#logger.log('----> {:}'.format(policy.arch_parameters))
|
||||||
|
#logger.log('')
|
||||||
|
|
||||||
|
# best_arch = policy.genotype() # first version
|
||||||
|
best_arch = max(trace, key=lambda x: x[0])[1]
|
||||||
|
logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs[-1], time.time()-x_start_time))
|
||||||
|
info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
|
||||||
|
logger.log('{:}'.format(info))
|
||||||
|
logger.log('-'*100)
|
||||||
|
logger.close()
|
||||||
|
|
||||||
|
return logger.log_dir, [api.query_index_by_arch(x[0]) for x in trace], total_costs
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser("The REINFORCE Algorithm")
|
||||||
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||||
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||||
|
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
||||||
|
parser.add_argument('--learning_rate', type=float, help='The learning rate for REINFORCE.')
|
||||||
|
parser.add_argument('--EMA_momentum', type=float, default=0.9, help='The momentum value for EMA.')
|
||||||
|
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
||||||
|
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||||
|
# log
|
||||||
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||||
|
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||||||
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
||||||
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||||
|
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
if args.search_space == 'tss':
|
||||||
|
api = NASBench201API(verbose=False)
|
||||||
|
elif args.search_space == 'sss':
|
||||||
|
api = NASBench301API(verbose=False)
|
||||||
|
else:
|
||||||
|
raise ValueError('Invalid search space : {:}'.format(args.search_space))
|
||||||
|
|
||||||
|
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'REINFORCE-{:}'.format(args.learning_rate))
|
||||||
|
print('save-dir : {:}'.format(args.save_dir))
|
||||||
|
|
||||||
|
if args.rand_seed < 0:
|
||||||
|
save_dir, all_info = None, {}
|
||||||
|
for i in range(args.loops_if_rand):
|
||||||
|
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand))
|
||||||
|
args.rand_seed = random.randint(1, 100000)
|
||||||
|
save_dir, all_archs, all_total_times = main(args, api)
|
||||||
|
all_info[i] = {'all_archs': all_archs,
|
||||||
|
'all_total_times': all_total_times}
|
||||||
|
save_path = save_dir / 'results.pth'
|
||||||
|
print('save into {:}'.format(save_path))
|
||||||
|
torch.save(all_info, save_path)
|
||||||
|
else:
|
||||||
|
main(args, api)
|
@ -184,7 +184,7 @@ def main(xargs, nas_bench):
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
parser = argparse.ArgumentParser("The REINFORCE Algorithm")
|
||||||
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||||
# channels and number-of-cells
|
# channels and number-of-cells
|
||||||
|
Loading…
Reference in New Issue
Block a user