| 
							
							
							
						 |  |  | @@ -1,7 +1,7 @@ | 
		
	
		
			
				|  |  |  |  | ##################################################### | 
		
	
		
			
				|  |  |  |  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 # | 
		
	
		
			
				|  |  |  |  | ############################################################################ | 
		
	
		
			
				|  |  |  |  | # CUDA_VISIBLE_DEVICES=0 python exps/synthetic/baseline.py                 # | 
		
	
		
			
				|  |  |  |  | # CUDA_VISIBLE_DEVICES=0 python exps/LFNA/vis-synthetic.py                 # | 
		
	
		
			
				|  |  |  |  | ############################################################################ | 
		
	
		
			
				|  |  |  |  | import os, sys, copy, random | 
		
	
		
			
				|  |  |  |  | import torch | 
		
	
	
		
			
				
					
					|  |  |  | @@ -31,17 +31,19 @@ from datasets.synthetic_example import create_example_v1 | 
		
	
		
			
				|  |  |  |  | from utils.temp_sync import optimize_fn, evaluate_fn | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | def draw_fig(save_dir, timestamp, scatter_list): | 
		
	
		
			
				|  |  |  |  | def draw_multi_fig(save_dir, timestamp, scatter_list, fig_title=None): | 
		
	
		
			
				|  |  |  |  |     save_path = save_dir / "{:04d}".format(timestamp) | 
		
	
		
			
				|  |  |  |  |     # print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path)) | 
		
	
		
			
				|  |  |  |  |     dpi, width, height = 40, 1500, 1500 | 
		
	
		
			
				|  |  |  |  |     dpi, width, height = 40, 2000, 1300 | 
		
	
		
			
				|  |  |  |  |     figsize = width / float(dpi), height / float(dpi) | 
		
	
		
			
				|  |  |  |  |     LabelSize, LegendFontsize, font_gap = 80, 80, 5 | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     fig = plt.figure(figsize=figsize) | 
		
	
		
			
				|  |  |  |  |     if fig_title is not None: | 
		
	
		
			
				|  |  |  |  |         fig.suptitle(fig_title, fontsize=LegendFontsize) | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     cur_ax = fig.add_subplot(1, 1, 1) | 
		
	
		
			
				|  |  |  |  |     for scatter_dict in scatter_list: | 
		
	
		
			
				|  |  |  |  |     for idx, scatter_dict in enumerate(scatter_list): | 
		
	
		
			
				|  |  |  |  |         cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1) | 
		
	
		
			
				|  |  |  |  |         cur_ax.scatter( | 
		
	
		
			
				|  |  |  |  |             scatter_dict["xaxis"], | 
		
	
		
			
				|  |  |  |  |             scatter_dict["yaxis"], | 
		
	
	
		
			
				
					
					|  |  |  | @@ -50,15 +52,15 @@ def draw_fig(save_dir, timestamp, scatter_list): | 
		
	
		
			
				|  |  |  |  |             alpha=scatter_dict["alpha"], | 
		
	
		
			
				|  |  |  |  |             label=scatter_dict["label"], | 
		
	
		
			
				|  |  |  |  |         ) | 
		
	
		
			
				|  |  |  |  |     cur_ax.set_xlabel("X", fontsize=LabelSize) | 
		
	
		
			
				|  |  |  |  |     cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize) | 
		
	
		
			
				|  |  |  |  |     cur_ax.set_xlim(-6, 6) | 
		
	
		
			
				|  |  |  |  |     cur_ax.set_ylim(-40, 40) | 
		
	
		
			
				|  |  |  |  |     for tick in cur_ax.xaxis.get_major_ticks(): | 
		
	
		
			
				|  |  |  |  |         tick.label.set_fontsize(LabelSize - font_gap) | 
		
	
		
			
				|  |  |  |  |         tick.label.set_rotation(10) | 
		
	
		
			
				|  |  |  |  |     for tick in cur_ax.yaxis.get_major_ticks(): | 
		
	
		
			
				|  |  |  |  |         tick.label.set_fontsize(LabelSize - font_gap) | 
		
	
		
			
				|  |  |  |  |         cur_ax.set_xlabel("X", fontsize=LabelSize) | 
		
	
		
			
				|  |  |  |  |         cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize) | 
		
	
		
			
				|  |  |  |  |         cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1]) | 
		
	
		
			
				|  |  |  |  |         cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1]) | 
		
	
		
			
				|  |  |  |  |         for tick in cur_ax.xaxis.get_major_ticks(): | 
		
	
		
			
				|  |  |  |  |             tick.label.set_fontsize(LabelSize - font_gap) | 
		
	
		
			
				|  |  |  |  |             tick.label.set_rotation(10) | 
		
	
		
			
				|  |  |  |  |         for tick in cur_ax.yaxis.get_major_ticks(): | 
		
	
		
			
				|  |  |  |  |             tick.label.set_fontsize(LabelSize - font_gap) | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     plt.legend(loc=1, fontsize=LegendFontsize) | 
		
	
		
			
				|  |  |  |  |     fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf") | 
		
	
	
		
			
				
					
					|  |  |  | @@ -66,7 +68,7 @@ def draw_fig(save_dir, timestamp, scatter_list): | 
		
	
		
			
				|  |  |  |  |     plt.close("all") | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | def main(save_dir): | 
		
	
		
			
				|  |  |  |  | def compare_cl(save_dir): | 
		
	
		
			
				|  |  |  |  |     save_dir = Path(str(save_dir)) | 
		
	
		
			
				|  |  |  |  |     save_dir.mkdir(parents=True, exist_ok=True) | 
		
	
		
			
				|  |  |  |  |     dynamic_env, function = create_example_v1(100, num_per_task=1000) | 
		
	
	
		
			
				
					
					|  |  |  | @@ -74,6 +76,10 @@ def main(save_dir): | 
		
	
		
			
				|  |  |  |  |     additional_xaxis = np.arange(-6, 6, 0.2) | 
		
	
		
			
				|  |  |  |  |     models = dict() | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     cl_function = copy.deepcopy(function) | 
		
	
		
			
				|  |  |  |  |     cl_function.set_timestamp(0) | 
		
	
		
			
				|  |  |  |  |     cl_xaxis_all = None | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)): | 
		
	
		
			
				|  |  |  |  |         xaxis_all = dataset[:, 0].numpy() | 
		
	
		
			
				|  |  |  |  |         # xaxis_all = np.concatenate((additional_xaxis, xaxis_all)) | 
		
	
	
		
			
				
					
					|  |  |  | @@ -81,51 +87,46 @@ def main(save_dir): | 
		
	
		
			
				|  |  |  |  |         function.set_timestamp(timestamp) | 
		
	
		
			
				|  |  |  |  |         yaxis_all = function.noise_call(xaxis_all) | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |         # split the dataset | 
		
	
		
			
				|  |  |  |  |         indexes = list(range(xaxis_all.shape[0])) | 
		
	
		
			
				|  |  |  |  |         random.shuffle(indexes) | 
		
	
		
			
				|  |  |  |  |         train_indexes = indexes[: len(indexes) // 2] | 
		
	
		
			
				|  |  |  |  |         valid_indexes = indexes[len(indexes) // 2 :] | 
		
	
		
			
				|  |  |  |  |         train_xs, train_ys = xaxis_all[train_indexes], yaxis_all[train_indexes] | 
		
	
		
			
				|  |  |  |  |         valid_xs, valid_ys = xaxis_all[valid_indexes], yaxis_all[valid_indexes] | 
		
	
		
			
				|  |  |  |  |         # create CL data | 
		
	
		
			
				|  |  |  |  |         if cl_xaxis_all is None: | 
		
	
		
			
				|  |  |  |  |             cl_xaxis_all = xaxis_all | 
		
	
		
			
				|  |  |  |  |         else: | 
		
	
		
			
				|  |  |  |  |             cl_xaxis_all = np.concatenate((cl_xaxis_all, xaxis_all + timestamp * 0.2)) | 
		
	
		
			
				|  |  |  |  |         cl_yaxis_all = cl_function(cl_xaxis_all) | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |         model, loss_fn, train_loss = optimize_fn(train_xs, train_ys) | 
		
	
		
			
				|  |  |  |  |         # model, loss_fn, train_loss = optimize_fn(xaxis_all, yaxis_all) | 
		
	
		
			
				|  |  |  |  |         pred_valid_ys, valid_loss = evaluate_fn(model, valid_xs, valid_ys, loss_fn) | 
		
	
		
			
				|  |  |  |  |         print( | 
		
	
		
			
				|  |  |  |  |             "[{:03d}] T-{:03d}, train-loss={:.5f}, valid-loss={:.5f}".format( | 
		
	
		
			
				|  |  |  |  |                 idx, timestamp, train_loss, valid_loss | 
		
	
		
			
				|  |  |  |  |             ) | 
		
	
		
			
				|  |  |  |  |         ) | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |         # the first plot | 
		
	
		
			
				|  |  |  |  |         scatter_list = [] | 
		
	
		
			
				|  |  |  |  |         scatter_list.append( | 
		
	
		
			
				|  |  |  |  |             { | 
		
	
		
			
				|  |  |  |  |                 "xaxis": valid_xs, | 
		
	
		
			
				|  |  |  |  |                 "yaxis": valid_ys, | 
		
	
		
			
				|  |  |  |  |                 "xaxis": xaxis_all, | 
		
	
		
			
				|  |  |  |  |                 "yaxis": yaxis_all, | 
		
	
		
			
				|  |  |  |  |                 "color": "k", | 
		
	
		
			
				|  |  |  |  |                 "s": 10, | 
		
	
		
			
				|  |  |  |  |                 "alpha": 0.99, | 
		
	
		
			
				|  |  |  |  |                 "label": "Timestamp={:02d}".format(timestamp), | 
		
	
		
			
				|  |  |  |  |                 "xlim": (-6, 6), | 
		
	
		
			
				|  |  |  |  |                 "ylim": (-40, 40), | 
		
	
		
			
				|  |  |  |  |                 "label": "LFNA", | 
		
	
		
			
				|  |  |  |  |             } | 
		
	
		
			
				|  |  |  |  |         ) | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |         scatter_list.append( | 
		
	
		
			
				|  |  |  |  |             { | 
		
	
		
			
				|  |  |  |  |                 "xaxis": valid_xs, | 
		
	
		
			
				|  |  |  |  |                 "yaxis": pred_valid_ys, | 
		
	
		
			
				|  |  |  |  |                 "xaxis": cl_xaxis_all, | 
		
	
		
			
				|  |  |  |  |                 "yaxis": cl_yaxis_all, | 
		
	
		
			
				|  |  |  |  |                 "color": "r", | 
		
	
		
			
				|  |  |  |  |                 "s": 10, | 
		
	
		
			
				|  |  |  |  |                 "alpha": 0.5, | 
		
	
		
			
				|  |  |  |  |                 "label": "MLP at now", | 
		
	
		
			
				|  |  |  |  |                 "xlim": (-6, 6 + timestamp * 0.2), | 
		
	
		
			
				|  |  |  |  |                 "ylim": (-200, 40), | 
		
	
		
			
				|  |  |  |  |                 "alpha": 0.99, | 
		
	
		
			
				|  |  |  |  |                 "label": "Continual Learning", | 
		
	
		
			
				|  |  |  |  |             } | 
		
	
		
			
				|  |  |  |  |         ) | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |         draw_fig(save_dir, timestamp, scatter_list) | 
		
	
		
			
				|  |  |  |  |         draw_multi_fig( | 
		
	
		
			
				|  |  |  |  |             save_dir, timestamp, scatter_list, "Timestamp={:03d}".format(timestamp) | 
		
	
		
			
				|  |  |  |  |         ) | 
		
	
		
			
				|  |  |  |  |     print("Save all figures into {:}".format(save_dir)) | 
		
	
		
			
				|  |  |  |  |     save_dir = save_dir.resolve() | 
		
	
		
			
				|  |  |  |  |     cmd = "ffmpeg -y -i {xdir}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1000:1000 -vb 5000k {xdir}/vis.mp4".format( | 
		
	
		
			
				|  |  |  |  |     cmd = "ffmpeg -y -i {xdir}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1500:1000 -vb 5000k {xdir}/vis.mp4".format( | 
		
	
		
			
				|  |  |  |  |         xdir=save_dir | 
		
	
		
			
				|  |  |  |  |     ) | 
		
	
		
			
				|  |  |  |  |     os.system(cmd) | 
		
	
	
		
			
				
					
					|  |  |  | @@ -133,7 +134,7 @@ def main(save_dir): | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | if __name__ == "__main__": | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     parser = argparse.ArgumentParser("Baseline") | 
		
	
		
			
				|  |  |  |  |     parser = argparse.ArgumentParser("Visualize synthetic data.") | 
		
	
		
			
				|  |  |  |  |     parser.add_argument( | 
		
	
		
			
				|  |  |  |  |         "--save_dir", | 
		
	
		
			
				|  |  |  |  |         type=str, | 
		
	
	
		
			
				
					
					|  |  |  | @@ -142,4 +143,4 @@ if __name__ == "__main__": | 
		
	
		
			
				|  |  |  |  |     ) | 
		
	
		
			
				|  |  |  |  |     args = parser.parse_args() | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |     main(args.save_dir) | 
		
	
		
			
				|  |  |  |  |     compare_cl(os.path.join(args.save_dir, "compare-cl")) |