change batchsize in DARTS-NASNet to 64 ; add some type checking
This commit is contained in:
		| @@ -4,6 +4,7 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import List, Text, Dict | ||||
| from .search_cells     import NASNetSearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
| @@ -11,7 +12,7 @@ from .genotypes        import Structure | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkDARTS(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||||
|   def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int, num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool): | ||||
|     super(NASNetworkDARTS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
| @@ -44,31 +45,31 @@ class NASNetworkDARTS(nn.Module): | ||||
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|  | ||||
|   def get_weights(self): | ||||
|   def get_weights(self) -> List[torch.nn.Parameter]: | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|   def get_alphas(self) -> List[torch.nn.Parameter]: | ||||
|     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|   def show_alphas(self) -> Text: | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||
|     return '{:}\n{:}'.format(A, B) | ||||
|  | ||||
|   def get_message(self): | ||||
|   def get_message(self) -> Text: | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|   def extra_repr(self) -> Text: | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|   def genotype(self) -> Dict[Text, List]: | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|   | ||||
		Reference in New Issue
	
	Block a user