Add SuperTransformerEncoder
This commit is contained in:
		
							
								
								
									
										1
									
								
								.github/workflows/basic_test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/basic_test.yml
									
									
									
									
										vendored
									
									
								
							| @@ -40,6 +40,7 @@ jobs: | ||||
|       - name: Test Search Space | ||||
|         run: | | ||||
|           python -m pip install pytest numpy | ||||
|           python -m pip install parameterized | ||||
|           echo $PWD | ||||
|           echo "Show what we have here:" | ||||
|           ls | ||||
|   | ||||
							
								
								
									
										1
									
								
								.github/workflows/super_model_test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/super_model_test.yml
									
									
									
									
										vendored
									
									
								
							| @@ -27,6 +27,7 @@ jobs: | ||||
|       - name: Test Super Model | ||||
|         run: | | ||||
|           python -m pip install pytest numpy | ||||
|           python -m pip install parameterized | ||||
|           python -m pip install torch torchvision torchaudio | ||||
|           python -m pytest ./tests/test_super_model.py -s | ||||
|         shell: bash | ||||
|   | ||||
| @@ -29,8 +29,8 @@ class SuperAttention(SuperModule): | ||||
|         proj_dim: IntSpaceType, | ||||
|         num_heads: IntSpaceType, | ||||
|         qkv_bias: BoolSpaceType = False, | ||||
|         attn_drop: float = 0.0, | ||||
|         proj_drop: float = 0.0, | ||||
|         attn_drop: Optional[float] = None, | ||||
|         proj_drop: Optional[float] = None, | ||||
|     ): | ||||
|         super(SuperAttention, self).__init__() | ||||
|         self._input_dim = input_dim | ||||
| @@ -45,9 +45,9 @@ class SuperAttention(SuperModule): | ||||
|         self.k_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) | ||||
|         self.v_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) | ||||
|  | ||||
|         self.attn_drop = nn.Dropout(attn_drop) | ||||
|         self.attn_drop = nn.Dropout(attn_drop or 0.0) | ||||
|         self.proj = SuperLinear(input_dim, proj_dim) | ||||
|         self.proj_drop = nn.Dropout(proj_drop) | ||||
|         self.proj_drop = nn.Dropout(proj_drop or 0.0) | ||||
|  | ||||
|     @property | ||||
|     def num_heads(self): | ||||
|   | ||||
| @@ -4,5 +4,7 @@ | ||||
| from .super_module import SuperRunMode | ||||
| from .super_module import SuperModule | ||||
| from .super_linear import SuperLinear | ||||
| from .super_linear import SuperMLP | ||||
| from .super_linear import SuperMLPv1, SuperMLPv2 | ||||
| from .super_norm import SuperLayerNorm1D | ||||
| from .super_attention import SuperAttention | ||||
| from .super_transformer import SuperTransformerEncoderLayer | ||||
|   | ||||
| @@ -113,7 +113,7 @@ class SuperLinear(SuperModule): | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SuperMLP(SuperModule): | ||||
| class SuperMLPv1(SuperModule): | ||||
|     """An MLP layer: FC -> Activation -> Drop -> FC -> Drop.""" | ||||
|  | ||||
|     def __init__( | ||||
| @@ -124,7 +124,7 @@ class SuperMLP(SuperModule): | ||||
|         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||
|         drop: Optional[float] = None, | ||||
|     ): | ||||
|         super(SuperMLP, self).__init__() | ||||
|         super(SuperMLPv1, self).__init__() | ||||
|         self._in_features = in_features | ||||
|         self._hidden_features = hidden_features | ||||
|         self._out_features = out_features | ||||
| @@ -146,20 +146,17 @@ class SuperMLP(SuperModule): | ||||
|         return root_node | ||||
|  | ||||
|     def apply_candidate(self, abstract_child: spaces.VirtualNode): | ||||
|         super(SuperMLP, self).apply_candidate(abstract_child) | ||||
|         super(SuperMLPv1, self).apply_candidate(abstract_child) | ||||
|         if "fc1" in abstract_child: | ||||
|             self.fc1.apply_candidate(abstract_child["fc1"]) | ||||
|         if "fc2" in abstract_child: | ||||
|             self.fc2.apply_candidate(abstract_child["fc2"]) | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return self._unified_forward(input) | ||||
|         return self.forward_raw(input) | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return self._unified_forward(input) | ||||
|  | ||||
|     def _unified_forward(self, x): | ||||
|         x = self.fc1(x) | ||||
|         x = self.fc1(input) | ||||
|         x = self.act(x) | ||||
|         x = self.drop(x) | ||||
|         x = self.fc2(x) | ||||
| @@ -173,3 +170,137 @@ class SuperMLP(SuperModule): | ||||
|             self._out_features, | ||||
|             self._drop_rate, | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SuperMLPv2(SuperModule): | ||||
|     """An MLP layer: FC -> Activation -> Drop -> FC -> Drop.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         in_features: IntSpaceType, | ||||
|         hidden_multiplier: IntSpaceType, | ||||
|         out_features: IntSpaceType, | ||||
|         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||
|         drop: Optional[float] = None, | ||||
|     ): | ||||
|         super(SuperMLPv2, self).__init__() | ||||
|         self._in_features = in_features | ||||
|         self._hidden_multiplier = hidden_multiplier | ||||
|         self._out_features = out_features | ||||
|         self._drop_rate = drop | ||||
|         self._params = nn.ParameterDict({}) | ||||
|  | ||||
|         self._create_linear( | ||||
|             "fc1", self.in_features, int(self.in_features * self.hidden_multiplier) | ||||
|         ) | ||||
|         self._create_linear( | ||||
|             "fc2", int(self.in_features * self.hidden_multiplier), self.out_features | ||||
|         ) | ||||
|         self.act = act_layer() | ||||
|         self.drop = nn.Dropout(drop or 0.0) | ||||
|         self.reset_parameters() | ||||
|  | ||||
|     @property | ||||
|     def in_features(self): | ||||
|         return spaces.get_max(self._in_features) | ||||
|  | ||||
|     @property | ||||
|     def hidden_multiplier(self): | ||||
|         return spaces.get_max(self._hidden_multiplier) | ||||
|  | ||||
|     @property | ||||
|     def out_features(self): | ||||
|         return spaces.get_max(self._out_features) | ||||
|  | ||||
|     def _create_linear(self, name, inC, outC): | ||||
|         self._params["{:}_super_weight".format(name)] = torch.nn.Parameter( | ||||
|             torch.Tensor(outC, inC) | ||||
|         ) | ||||
|         self._params["{:}_super_bias".format(name)] = torch.nn.Parameter( | ||||
|             torch.Tensor(outC) | ||||
|         ) | ||||
|  | ||||
|     def reset_parameters(self) -> None: | ||||
|         nn.init.kaiming_uniform_(self._params["fc1_super_weight"], a=math.sqrt(5)) | ||||
|         nn.init.kaiming_uniform_(self._params["fc2_super_weight"], a=math.sqrt(5)) | ||||
|         fan_in, _ = nn.init._calculate_fan_in_and_fan_out( | ||||
|             self._params["fc1_super_weight"] | ||||
|         ) | ||||
|         bound = 1 / math.sqrt(fan_in) | ||||
|         nn.init.uniform_(self._params["fc1_super_bias"], -bound, bound) | ||||
|         fan_in, _ = nn.init._calculate_fan_in_and_fan_out( | ||||
|             self._params["fc2_super_weight"] | ||||
|         ) | ||||
|         bound = 1 / math.sqrt(fan_in) | ||||
|         nn.init.uniform_(self._params["fc2_super_bias"], -bound, bound) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         root_node = spaces.VirtualNode(id(self)) | ||||
|         if not spaces.is_determined(self._in_features): | ||||
|             root_node.append( | ||||
|                 "_in_features", self._in_features.abstract(reuse_last=True) | ||||
|             ) | ||||
|         if not spaces.is_determined(self._hidden_multiplier): | ||||
|             root_node.append( | ||||
|                 "_hidden_multiplier", self._hidden_multiplier.abstract(reuse_last=True) | ||||
|             ) | ||||
|         if not spaces.is_determined(self._out_features): | ||||
|             root_node.append( | ||||
|                 "_out_features", self._out_features.abstract(reuse_last=True) | ||||
|             ) | ||||
|         return root_node | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         # check inputs -> | ||||
|         if not spaces.is_determined(self._in_features): | ||||
|             expected_input_dim = self.abstract_child["_in_features"].value | ||||
|         else: | ||||
|             expected_input_dim = spaces.get_determined_value(self._in_features) | ||||
|         if input.size(-1) != expected_input_dim: | ||||
|             raise ValueError( | ||||
|                 "Expect the input dim of {:} instead of {:}".format( | ||||
|                     expected_input_dim, input.size(-1) | ||||
|                 ) | ||||
|             ) | ||||
|         # create the weight and bias matrix for fc1 | ||||
|         if not spaces.is_determined(self._hidden_multiplier): | ||||
|             hmul = self.abstract_child["_hidden_multiplier"].value * expected_input_dim | ||||
|         else: | ||||
|             hmul = spaces.get_determined_value(self._hidden_multiplier) | ||||
|         hidden_dim = int(expected_input_dim * hmul) | ||||
|         _fc1_weight = self._params["fc1_super_weight"][:hidden_dim, :expected_input_dim] | ||||
|         _fc1_bias = self._params["fc1_super_bias"][:hidden_dim] | ||||
|         x = F.linear(input, _fc1_weight, _fc1_bias) | ||||
|         x = self.act(x) | ||||
|         x = self.drop(x) | ||||
|         # create the weight and bias matrix for fc2 | ||||
|         if not spaces.is_determined(self._out_features): | ||||
|             out_dim = self.abstract_child["_out_features"].value | ||||
|         else: | ||||
|             out_dim = spaces.get_determined_value(self._out_features) | ||||
|         _fc2_weight = self._params["fc2_super_weight"][:out_dim, :hidden_dim] | ||||
|         _fc2_bias = self._params["fc2_super_bias"][:out_dim] | ||||
|         x = F.linear(x, _fc2_weight, _fc2_bias) | ||||
|         x = self.drop(x) | ||||
|         return x | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         x = F.linear( | ||||
|             input, self._params["fc1_super_weight"], self._params["fc1_super_bias"] | ||||
|         ) | ||||
|         x = self.act(x) | ||||
|         x = self.drop(x) | ||||
|         x = F.linear( | ||||
|             x, self._params["fc2_super_weight"], self._params["fc2_super_bias"] | ||||
|         ) | ||||
|         x = self.drop(x) | ||||
|         return x | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "in_features={:}, hidden_multiplier={:}, out_features={:}, drop={:}, fc1 -> act -> drop -> fc2 -> drop,".format( | ||||
|             self._in_features, | ||||
|             self._hidden_multiplier, | ||||
|             self._out_features, | ||||
|             self._drop_rate, | ||||
|         ) | ||||
|   | ||||
							
								
								
									
										82
									
								
								lib/xlayers/super_norm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										82
									
								
								lib/xlayers/super_norm.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,82 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import math | ||||
| from typing import Optional, Callable | ||||
|  | ||||
| import spaces | ||||
| from .super_module import SuperModule | ||||
| from .super_module import IntSpaceType | ||||
| from .super_module import BoolSpaceType | ||||
|  | ||||
|  | ||||
| class SuperLayerNorm1D(SuperModule): | ||||
|     """Super Layer Norm.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, dim: IntSpaceType, eps: float = 1e-5, elementwise_affine: bool = True | ||||
|     ) -> None: | ||||
|         super(SuperLayerNorm1D, self).__init__() | ||||
|         self._in_dim = dim | ||||
|         self._eps = eps | ||||
|         self._elementwise_affine = elementwise_affine | ||||
|         if self._elementwise_affine: | ||||
|             self.weight = nn.Parameter(torch.Tensor(self.in_dim)) | ||||
|             self.bias = nn.Parameter(torch.Tensor(self.in_dim)) | ||||
|         else: | ||||
|             self.register_parameter("weight", None) | ||||
|             self.register_parameter("bias", None) | ||||
|         self.reset_parameters() | ||||
|  | ||||
|     @property | ||||
|     def in_dim(self): | ||||
|         return spaces.get_max(self._in_dim) | ||||
|  | ||||
|     @property | ||||
|     def eps(self): | ||||
|         return self._eps | ||||
|  | ||||
|     def reset_parameters(self) -> None: | ||||
|         if self._elementwise_affine: | ||||
|             nn.init.ones_(self.weight) | ||||
|             nn.init.zeros_(self.bias) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         root_node = spaces.VirtualNode(id(self)) | ||||
|         if not spaces.is_determined(self._in_dim): | ||||
|             root_node.append("_in_dim", self._in_dim.abstract(reuse_last=True)) | ||||
|         return root_node | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         # check inputs -> | ||||
|         if not spaces.is_determined(self._in_dim): | ||||
|             expected_input_dim = self.abstract_child["_in_dim"].value | ||||
|         else: | ||||
|             expected_input_dim = spaces.get_determined_value(self._in_dim) | ||||
|         if input.size(-1) != expected_input_dim: | ||||
|             raise ValueError( | ||||
|                 "Expect the input dim of {:} instead of {:}".format( | ||||
|                     expected_input_dim, input.size(-1) | ||||
|                 ) | ||||
|             ) | ||||
|         if self._elementwise_affine: | ||||
|             weight = self.weight[:expected_input_dim] | ||||
|             bias = self.bias[:expected_input_dim] | ||||
|         else: | ||||
|             weight, bias = None, None | ||||
|         return F.layer_norm(input, (expected_input_dim,), weight, bias, self.eps) | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return F.layer_norm(input, (self.in_dim,), self.weight, self.bias, self.eps) | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "{in_dim}, eps={eps}, " "elementwise_affine={elementwise_affine}".format( | ||||
|             in_dim=self._in_dim, | ||||
|             eps=self._eps, | ||||
|             elementwise_affine=self._elementwise_affine, | ||||
|         ) | ||||
							
								
								
									
										100
									
								
								lib/xlayers/super_transformer.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										100
									
								
								lib/xlayers/super_transformer.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,100 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import math | ||||
| from functools import partial | ||||
| from typing import Optional, Callable | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import spaces | ||||
| from .super_module import IntSpaceType | ||||
| from .super_module import BoolSpaceType | ||||
| from .super_module import SuperModule | ||||
| from .super_linear import SuperMLPv2 | ||||
| from .super_norm import SuperLayerNorm1D | ||||
| from .super_attention import SuperAttention | ||||
|  | ||||
|  | ||||
| class SuperTransformerEncoderLayer(SuperModule): | ||||
|     """TransformerEncoderLayer is made up of self-attn and feedforward network. | ||||
|     This is a super model for TransformerEncoderLayer that can support search for the transformer encoder layer. | ||||
|  | ||||
|     Reference: | ||||
|       - Paper: Attention Is All You Need, NeurIPS 2017 | ||||
|       - PyTorch Implementation: https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#TransformerEncoderLayer | ||||
|  | ||||
|     Details: | ||||
|       MHA -> residual -> norm -> MLP -> residual -> norm | ||||
|     """ | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         input_dim: IntSpaceType, | ||||
|         output_dim: IntSpaceType, | ||||
|         num_heads: IntSpaceType, | ||||
|         qkv_bias: BoolSpaceType = False, | ||||
|         mlp_hidden_multiplier: IntSpaceType = 4, | ||||
|         drop: Optional[float] = None, | ||||
|         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||
|     ): | ||||
|         super(SuperTransformerEncoderLayer, self).__init__() | ||||
|         self.mha = SuperAttention( | ||||
|             input_dim, | ||||
|             input_dim, | ||||
|             num_heads=num_heads, | ||||
|             qkv_bias=qkv_bias, | ||||
|             attn_drop=drop, | ||||
|             proj_drop=drop, | ||||
|         ) | ||||
|         self.drop1 = nn.Dropout(drop or 0.0) | ||||
|         self.norm1 = SuperLayerNorm1D(input_dim) | ||||
|         self.mlp = SuperMLPv2( | ||||
|             input_dim, | ||||
|             hidden_multiplier=mlp_hidden_multiplier, | ||||
|             out_features=output_dim, | ||||
|             act_layer=act_layer, | ||||
|             drop=drop, | ||||
|         ) | ||||
|         self.drop2 = nn.Dropout(drop or 0.0) | ||||
|         self.norm2 = SuperLayerNorm1D(output_dim) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         root_node = spaces.VirtualNode(id(self)) | ||||
|         xdict = dict( | ||||
|             mha=self.mha.abstract_search_space, | ||||
|             norm1=self.norm1.abstract_search_space, | ||||
|             mlp=self.mlp.abstract_search_space, | ||||
|             norm2=self.norm2.abstract_search_space, | ||||
|         ) | ||||
|         for key, space in xdict.items(): | ||||
|             if not spaces.is_determined(space): | ||||
|                 root_node.append(key, space) | ||||
|         return root_node | ||||
|  | ||||
|     def apply_candidate(self, abstract_child: spaces.VirtualNode): | ||||
|         super(SuperTransformerEncoderLayer, self).apply_candidate(abstract_child) | ||||
|         valid_keys = ["mha", "norm1", "mlp", "norm2"] | ||||
|         for key in valid_keys: | ||||
|             if key in abstract_child: | ||||
|                 getattr(self, key).apply_candidate(abstract_child[key]) | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return self.forward_raw(input) | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         # multi-head attention | ||||
|         x = self.mha(input) | ||||
|         x = x + self.drop1(x) | ||||
|         x = self.norm1(x) | ||||
|         # feed-forward layer | ||||
|         x = self.mlp(x) | ||||
|         x = x + self.drop2(x) | ||||
|         x = self.norm2(x) | ||||
|         return x | ||||
| @@ -1,93 +0,0 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 1, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "library path: /Users/xuanyidong/Desktop/XAutoDL/lib\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "#####################################################\n", | ||||
|     "# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #\n", | ||||
|     "#####################################################\n", | ||||
|     "import abc, os, sys\n", | ||||
|     "from pathlib import Path\n", | ||||
|     "\n", | ||||
|     "__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n", | ||||
|     "\n", | ||||
|     "lib_dir = (Path(__file__).parent / \"..\" / \"lib\").resolve()\n", | ||||
|     "print(\"library path: {:}\".format(lib_dir))\n", | ||||
|     "assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n", | ||||
|     "if str(lib_dir) not in sys.path:\n", | ||||
|     "    sys.path.insert(0, str(lib_dir))" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 2, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "ename": "AttributeError", | ||||
|      "evalue": "default", | ||||
|      "output_type": "error", | ||||
|      "traceback": [ | ||||
|       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||||
|       "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)", | ||||
|       "\u001b[0;32m~/Desktop/XAutoDL/notebooks/spaces\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      6\u001b[0m \u001b[0mout_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mspaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mCategorical\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m24\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m36\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      7\u001b[0m \u001b[0mbias\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mspaces\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mCategorical\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSuperLinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout_features\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbias\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      9\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||||
|       "\u001b[0;32m~/Desktop/XAutoDL/lib/layers/super_mlp.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, in_features, out_features, bias)\u001b[0m\n\u001b[1;32m     26\u001b[0m         \u001b[0mbias\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mBoolSpaceType\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     27\u001b[0m     ) -> None:\n\u001b[0;32m---> 28\u001b[0;31m         \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mSuperLinear\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     29\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     30\u001b[0m         \u001b[0;31m# the raw input args\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||||
|       "\u001b[0;32m~/Desktop/XAutoDL/lib/layers/super_module.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m     20\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     21\u001b[0m         \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mSuperModule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_super_run_type\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSuperRunMode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     24\u001b[0m     \u001b[0;34m@\u001b[0m\u001b[0mabc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabstractmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||||
|       "\u001b[0;32m~/anaconda3/lib/python3.8/enum.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(cls, name)\u001b[0m\n\u001b[1;32m    339\u001b[0m             \u001b[0;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_member_map_\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    340\u001b[0m         \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 341\u001b[0;31m             \u001b[0;32mraise\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    342\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    343\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||||
|       "\u001b[0;31mAttributeError\u001b[0m: default" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "# Test the Linear layer\n", | ||||
|     "import spaces\n", | ||||
|     "from layers.super_core import SuperLinear\n", | ||||
|     "from layers.super_module import SuperRunMode\n", | ||||
|     "\n", | ||||
|     "out_features = spaces.Categorical(12, 24, 36)\n", | ||||
|     "bias = spaces.Categorical(True, False)\n", | ||||
|     "model = SuperLinear(10, out_features, bias=bias)\n", | ||||
|     "print(model)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.8.3" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 4 | ||||
| } | ||||
							
								
								
									
										102
									
								
								notebooks/spaces/random-search-transformer.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										102
									
								
								notebooks/spaces/random-search-transformer.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,102 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 1, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "library path: /Users/xuanyidong/Desktop/XAutoDL/lib\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "#####################################################\n", | ||||
|     "# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #\n", | ||||
|     "#####################################################\n", | ||||
|     "import abc, os, sys\n", | ||||
|     "from pathlib import Path\n", | ||||
|     "\n", | ||||
|     "__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n", | ||||
|     "\n", | ||||
|     "lib_dir = (Path(__file__).parent / \"..\" / \"lib\").resolve()\n", | ||||
|     "print(\"library path: {:}\".format(lib_dir))\n", | ||||
|     "assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n", | ||||
|     "if str(lib_dir) not in sys.path:\n", | ||||
|     "    sys.path.insert(0, str(lib_dir))" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 2, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "1.7.0\n", | ||||
|       "True\n", | ||||
|       "OrderedDict()\n", | ||||
|       "OrderedDict()\n", | ||||
|       "set()\n", | ||||
|       "OrderedDict()\n", | ||||
|       "OrderedDict()\n", | ||||
|       "OrderedDict()\n", | ||||
|       "OrderedDict()\n", | ||||
|       "OrderedDict()\n", | ||||
|       "OrderedDict()\n" | ||||
|      ] | ||||
|     }, | ||||
|     { | ||||
|      "name": "stderr", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "/Users/xuanyidong/anaconda3/lib/python3.8/site-packages/torch/nn/modules/container.py:551: UserWarning: Setting attributes on ParameterDict is not supported.\n", | ||||
|       "  warnings.warn(\"Setting attributes on ParameterDict is not supported.\")\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "# Test the Linear layer\n", | ||||
|     "import spaces\n", | ||||
|     "import torch\n", | ||||
|     "from xlayers import super_core\n", | ||||
|     "\n", | ||||
|     "print(torch.__version__)\n", | ||||
|     "mlp = super_core.SuperMLPv2(10, 12, 32)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.8.3" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 4 | ||||
| } | ||||
							
								
								
									
										71
									
								
								tests/test_super_att.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								tests/test_super_att.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,71 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest ./tests/test_super_model.py -s             # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
| from parameterized import parameterized | ||||
| import pytest | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / "lib").resolve() | ||||
| print("library path: {:}".format(lib_dir)) | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| import torch | ||||
| from xlayers import super_core | ||||
| import spaces | ||||
|  | ||||
|  | ||||
| class TestSuperAttention(unittest.TestCase): | ||||
|     """Test the super attention layer.""" | ||||
|  | ||||
|     def _internal_func(self, inputs, model): | ||||
|         outputs = model(inputs) | ||||
|         abstract_space = model.abstract_search_space | ||||
|         print( | ||||
|             "The abstract search space for SuperAttention is:\n{:}".format( | ||||
|                 abstract_space | ||||
|             ) | ||||
|         ) | ||||
|         abstract_space.clean_last() | ||||
|         abstract_child = abstract_space.random(reuse_last=True) | ||||
|         print("The abstract child program is:\n{:}".format(abstract_child)) | ||||
|         model.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||
|         model.apply_candidate(abstract_child) | ||||
|         outputs = model(inputs) | ||||
|         return abstract_child, outputs | ||||
|  | ||||
|     def test_super_attention(self): | ||||
|         proj_dim = spaces.Categorical(12, 24, 36) | ||||
|         num_heads = spaces.Categorical(2, 4, 6) | ||||
|         model = super_core.SuperAttention(10, proj_dim, num_heads) | ||||
|         print(model) | ||||
|         model.apply_verbose(True) | ||||
|  | ||||
|         inputs = torch.rand(4, 20, 10)  # batch size, sequence length, channel | ||||
|         abstract_child, outputs = self._internal_func(inputs, model) | ||||
|         output_shape = (4, 20, abstract_child["proj"]["_out_features"].value) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
|  | ||||
|     @parameterized.expand([[6], [12], [24], [48]]) | ||||
|     def test_transformer_encoder(self, input_dim): | ||||
|         output_dim = spaces.Categorical(12, 24, 36) | ||||
|         model = super_core.SuperTransformerEncoderLayer( | ||||
|             input_dim, | ||||
|             output_dim=output_dim, | ||||
|             num_heads=spaces.Categorical(2, 4, 6), | ||||
|             mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), | ||||
|         ) | ||||
|         print(model) | ||||
|         model.apply_verbose(True) | ||||
|         inputs = torch.rand(4, 20, input_dim) | ||||
|         abstract_child, outputs = self._internal_func(inputs, model) | ||||
|         output_shape = ( | ||||
|             4, | ||||
|             20, | ||||
|             output_dim.abstract(reuse_last=True).random(reuse_last=True).value, | ||||
|         ) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
| @@ -51,10 +51,10 @@ class TestSuperLinear(unittest.TestCase): | ||||
|         outputs = model(inputs) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
|  | ||||
|     def test_super_mlp(self): | ||||
|     def test_super_mlp_v1(self): | ||||
|         hidden_features = spaces.Categorical(12, 24, 36) | ||||
|         out_features = spaces.Categorical(24, 36, 48) | ||||
|         mlp = super_core.SuperMLP(10, hidden_features, out_features) | ||||
|         mlp = super_core.SuperMLPv1(10, hidden_features, out_features) | ||||
|         print(mlp) | ||||
|         mlp.apply_verbose(True) | ||||
|         self.assertTrue(mlp.fc1._out_features, mlp.fc2._in_features) | ||||
| @@ -64,7 +64,9 @@ class TestSuperLinear(unittest.TestCase): | ||||
|         self.assertEqual(tuple(outputs.shape), (4, 48)) | ||||
|  | ||||
|         abstract_space = mlp.abstract_search_space | ||||
|         print("The abstract search space for SuperMLP is:\n{:}".format(abstract_space)) | ||||
|         print( | ||||
|             "The abstract search space for SuperMLPv1 is:\n{:}".format(abstract_space) | ||||
|         ) | ||||
|         self.assertEqual( | ||||
|             abstract_space["fc1"]["_out_features"], | ||||
|             abstract_space["fc2"]["_in_features"], | ||||
| @@ -88,28 +90,28 @@ class TestSuperLinear(unittest.TestCase): | ||||
|         output_shape = (4, abstract_child["fc2"]["_out_features"].value) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
|  | ||||
|     def test_super_attention(self): | ||||
|         proj_dim = spaces.Categorical(12, 24, 36) | ||||
|         num_heads = spaces.Categorical(2, 4, 6) | ||||
|         model = super_core.SuperAttention(10, proj_dim, num_heads) | ||||
|         print(model) | ||||
|         model.apply_verbose(True) | ||||
|     def test_super_mlp_v2(self): | ||||
|         hidden_multiplier = spaces.Categorical(1.0, 2.0, 3.0) | ||||
|         out_features = spaces.Categorical(24, 36, 48) | ||||
|         mlp = super_core.SuperMLPv2(10, hidden_multiplier, out_features) | ||||
|         print(mlp) | ||||
|         mlp.apply_verbose(True) | ||||
|  | ||||
|         inputs = torch.rand(4, 20, 10)  # batch size, sequence length, channel | ||||
|         outputs = model(inputs) | ||||
|         inputs = torch.rand(4, 10) | ||||
|         outputs = mlp(inputs) | ||||
|         self.assertEqual(tuple(outputs.shape), (4, 48)) | ||||
|  | ||||
|         abstract_space = model.abstract_search_space | ||||
|         abstract_space = mlp.abstract_search_space | ||||
|         print( | ||||
|             "The abstract search space for SuperAttention is:\n{:}".format( | ||||
|                 abstract_space | ||||
|             ) | ||||
|             "The abstract search space for SuperMLPv2 is:\n{:}".format(abstract_space) | ||||
|         ) | ||||
|  | ||||
|         abstract_space.clean_last() | ||||
|         abstract_child = abstract_space.random(reuse_last=True) | ||||
|         print("The abstract child program is:\n{:}".format(abstract_child)) | ||||
|  | ||||
|         model.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||
|         model.apply_candidate(abstract_child) | ||||
|         outputs = model(inputs) | ||||
|         output_shape = (4, 20, abstract_child["proj"]["_out_features"].value) | ||||
|         mlp.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||
|         mlp.apply_candidate(abstract_child) | ||||
|         outputs = mlp(inputs) | ||||
|         output_shape = (4, abstract_child["_out_features"].value) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user