update codes
This commit is contained in:
		| @@ -122,6 +122,12 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1 | ||||
| ``` | ||||
|  | ||||
| #### Searching on the NASNet search space | ||||
| Please use the following scripts to use GDAS to search as in the original paper: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/GDAS-search-NASNet-space.sh cifar10 1 -1 | ||||
| ``` | ||||
|  | ||||
| #### Searching on a small search space (NAS-Bench-102) | ||||
| The GDAS searching codes on a small search space: | ||||
| ``` | ||||
|   | ||||
							
								
								
									
										9
									
								
								configs/search-archs/GDAS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								configs/search-archs/GDAS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| { | ||||
|   "super_type"      : ["str",  "nasnet-super"], | ||||
|   "name"            : ["str",  "GDAS"], | ||||
|   "C"               : ["int",  "16"  ], | ||||
|   "N"               : ["int",  "2"  ], | ||||
|   "steps"           : ["int",  "4"  ], | ||||
|   "multiplier"      : ["int",  "4"  ], | ||||
|   "stem_multiplier" : ["int",  "3"  ] | ||||
| } | ||||
							
								
								
									
										13
									
								
								configs/search-opts/GDAS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/search-opts/GDAS-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "LR"       : ["float", "0.025"], | ||||
|   "eta_min"  : ["float", "0.001"], | ||||
|   "epochs"   : ["int",   "250"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int",  "256"] | ||||
| } | ||||
| @@ -88,12 +88,17 @@ def main(xargs): | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space, | ||||
|                               'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | ||||
|   if xargs.model_config is None: | ||||
|     model_config = dict2config({'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                                 'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                                 'space'    : search_space, | ||||
|                                 'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | ||||
|   else: | ||||
|     model_config = load_config(xargs.model_config, {'num_classes': class_num, 'space'    : search_space, | ||||
|                                                     'affine'     : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|   logger.log('search-model :\n{:}'.format(search_model)) | ||||
|   logger.log('model-config : {:}'.format(model_config)) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
| @@ -104,7 +109,7 @@ def main(xargs): | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|   logger.log('search-space : {:}'.format(search_space)) | ||||
|   logger.log('search-space [{:} ops] : {:}'.format(len(search_space), search_space)) | ||||
|   if xargs.arch_nas_dataset is None: | ||||
|     api = None | ||||
|   else: | ||||
| @@ -173,7 +178,7 @@ def main(xargs): | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|       logger.log('{:}'.format(search_model.show_alphas())) | ||||
|     if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] ))) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
| @@ -198,6 +203,7 @@ if __name__ == '__main__': | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   parser.add_argument('--track_running_stats',type=int,   choices=[0,1],help='Whether use track_running_stats or not in the BN layer.') | ||||
|   parser.add_argument('--config_path',        type=str,   help='The path of the configuration.') | ||||
|   parser.add_argument('--model_config',       type=str,   help='The path of the model configuration. When this arg is set, it will cover max_nodes / channels / num_cells.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   | ||||
| @@ -13,20 +13,21 @@ from config_utils import dict2config | ||||
| from .SharedUtils import change_key | ||||
| from .cell_searchs import CellStructure, CellArchitectures | ||||
|  | ||||
|  | ||||
| # Cell-based NAS Models | ||||
| def get_cell_based_tiny_net(config): | ||||
|   super_type = getattr(config, 'super_type', 'basic') | ||||
|   group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM'] | ||||
|   if super_type == 'basic' and config.name in group_names: | ||||
|     from .cell_searchs import nas_super_nets | ||||
|     from .cell_searchs import nas102_super_nets as nas_super_nets | ||||
|     try: | ||||
|       return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats) | ||||
|     except: | ||||
|       return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space) | ||||
|   elif super_type == 'l2s-base' and config.name in group_names: | ||||
|     from .l2s_cell_searchs import nas_super_nets | ||||
|     return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space \ | ||||
|                                       ,config.n_piece) | ||||
|   elif super_type == 'nasnet-super': | ||||
|     from .cell_searchs import nasnet_super_nets as nas_super_nets | ||||
|     return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \ | ||||
|                     config.stem_multiplier, config.num_classes, config.space, config.affine, config.track_running_stats) | ||||
|   elif config.name == 'infer.tiny': | ||||
|     from .cell_infers import TinyNetwork | ||||
|     return TinyNetwork(config.C, config.N, config.genotype, config.num_classes) | ||||
|   | ||||
| @@ -28,7 +28,6 @@ SearchSpaceNames = {'connect-nas'  : CONNECT_NAS_BENCHMARK, | ||||
|                     'aa-nas'       : NAS_BENCH_102, | ||||
|                     'nas-bench-102': NAS_BENCH_102, | ||||
|                     'darts'        : DARTS_SPACE} | ||||
|                     #'full'         : sorted(list(OPS.keys()))} | ||||
|  | ||||
|  | ||||
| class ReLUConvBN(nn.Module): | ||||
|   | ||||
| @@ -1,16 +1,22 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # The macro structure is defined in NAS-Bench-102 | ||||
| from .search_model_darts    import TinyNetworkDarts | ||||
| from .search_model_gdas     import TinyNetworkGDAS | ||||
| from .search_model_setn     import TinyNetworkSETN | ||||
| from .search_model_enas     import TinyNetworkENAS | ||||
| from .search_model_random   import TinyNetworkRANDOM | ||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||
| # NASNet-based macro structure | ||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | ||||
|  | ||||
| nas_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
|  | ||||
| nas102_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
|                   'DARTS-V2': TinyNetworkDarts, | ||||
|                   'GDAS'    : TinyNetworkGDAS, | ||||
|                   'SETN'    : TinyNetworkSETN, | ||||
|                   'ENAS'    : TinyNetworkENAS, | ||||
|                   'RANDOM'  : TinyNetworkRANDOM} | ||||
|  | ||||
| nasnet_super_nets = {'GDAS' : NASNetworkGDAS} | ||||
|   | ||||
| @@ -9,10 +9,11 @@ from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| class SearchCell(nn.Module): | ||||
| # This module is used for NAS-Bench-102, represents a small search space with a complete DAG | ||||
| class NAS102SearchCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True): | ||||
|     super(SearchCell, self).__init__() | ||||
|     super(NAS102SearchCell, self).__init__() | ||||
|  | ||||
|     self.op_names  = deepcopy(op_names) | ||||
|     self.edges     = nn.ModuleDict() | ||||
| @@ -74,7 +75,7 @@ class SearchCell(nn.Module): | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # uniform random sampling per iteration | ||||
|   # uniform random sampling per iteration, SETN | ||||
|   def forward_urs(self, inputs): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
| @@ -118,3 +119,61 @@ class SearchCell(nn.Module): | ||||
|         inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|  | ||||
|  | ||||
| class MixedOp(nn.Module): | ||||
|  | ||||
|   def __init__(self, space, C, stride, affine, track_running_stats): | ||||
|     super(MixedOp, self).__init__() | ||||
|     self._ops = nn.ModuleList() | ||||
|     for primitive in space: | ||||
|       op = OPS[primitive](C, C, stride, affine, track_running_stats) | ||||
|       self._ops.append(op) | ||||
|  | ||||
|   def forward(self, x, weights, index): | ||||
|     #return sum(w * op(x) for w, op in zip(weights, self._ops)) | ||||
|     return self._ops[index](x) * weights[index] | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
| class NASNetSearchCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, space, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats): | ||||
|     super(NASNetSearchCell, self).__init__() | ||||
|     self.reduction = reduction | ||||
|     self.op_names  = deepcopy(space) | ||||
|     if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats) | ||||
|     else             : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats) | ||||
|     self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats) | ||||
|     self._steps = steps | ||||
|     self._multiplier = multiplier | ||||
|  | ||||
|     self._ops = nn.ModuleList() | ||||
|     self.edges     = nn.ModuleDict() | ||||
|     for i in range(self._steps): | ||||
|       for j in range(2+i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         stride = 2 if reduction and j < 2 else 1 | ||||
|         op = MixedOp(space, C, stride, affine, track_running_stats) | ||||
|         self.edges[ node_str ] = op | ||||
|     self.edge_keys  = sorted(list(self.edges.keys())) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|     self.num_edges  = len(self.edges) | ||||
|  | ||||
|   def forward_gdas(self, s0, s1, weightss, indexs): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|  | ||||
|     states = [s0, s1] | ||||
|     for i in range(self._steps): | ||||
|       clist = [] | ||||
|       for j, h in enumerate(states): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op = self.edges[ node_str ] | ||||
|         weights = weightss[ self.edge2index[node_str] ] | ||||
|         index   = indexs[ self.edge2index[node_str] ].item() | ||||
|         clist.append( op(h, weights, index) ) | ||||
|       states.append( sum(clist) ) | ||||
|  | ||||
|     return torch.cat(states[-self._multiplier:], dim=1) | ||||
|   | ||||
| @@ -7,7 +7,7 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -7,7 +7,7 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_model_enas_utils import Controller | ||||
|  | ||||
|   | ||||
| @@ -5,7 +5,7 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| @@ -59,6 +59,10 @@ class TinyNetworkGDAS(nn.Module): | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|   | ||||
							
								
								
									
										126
									
								
								lib/models/cell_searchs/search_model_gdas_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										126
									
								
								lib/models/cell_searchs/search_model_gdas_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,126 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from .search_cells     import NASNetSearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkGDAS(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||||
|     super(NASNetworkGDAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.tau        = 10 | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_tau(self): | ||||
|     return self.tau | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||
|     return '{:}\n{:}'.format(A, B) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||||
|       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||||
|             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     def get_gumbel_prob(xins): | ||||
|       while True: | ||||
|         gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|         logits  = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|         probs   = nn.functional.softmax(logits, dim=1) | ||||
|         index   = probs.max(-1, keepdim=True)[1] | ||||
|         one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|         hardwts = one_h - probs.detach() + probs | ||||
|         if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|           continue | ||||
|         else: break | ||||
|       return hardwts, index | ||||
|  | ||||
|     normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters) | ||||
|     reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters) | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if cell.reduction: hardwts, index = reduce_hardwts, reduce_index | ||||
|       else             : hardwts, index = normal_hardwts, normal_index | ||||
|       s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
| @@ -7,7 +7,7 @@ import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -7,7 +7,7 @@ import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
|   | ||||
							
								
								
									
										38
									
								
								scripts-search/GDAS-search-NASNet-space.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								scripts-search/GDAS-search-NASNet-space.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,38 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/GDAS-search-NASNet-space.sh cifar10 1 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 3 parameters for dataset, track_running_stats, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| track_running_stats=$2 | ||||
| seed=$3 | ||||
| space=darts | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/GDAS-${dataset}-BN${track_running_stats} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \ | ||||
| 	--save_dir ${save_dir} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--config_path  configs/search-opts/GDAS-NASNet-CIFAR.config \ | ||||
| 	--model_config configs/search-archs/GDAS-NASNet-CIFAR.config \ | ||||
| 	--tau_max 10 --tau_min 0.1 --track_running_stats ${track_running_stats} \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
		Reference in New Issue
	
	Block a user