Refine TT workflow

This commit is contained in:
D-X-Y 2021-03-06 06:38:34 -08:00
parent 511e2443d0
commit 349d9fcc9f
3 changed files with 135 additions and 88 deletions

View File

@ -21,60 +21,59 @@ from qlib.workflow import R
class QResult:
def __init__(self):
self._result = defaultdict(list)
def __init__(self):
self._result = defaultdict(list)
def append(self, key, value):
self._result[key].append(value)
def append(self, key, value):
self._result[key].append(value)
@property
def result(self):
return self._result
@property
def result(self):
return self._result
def update(self, metrics, filter_keys=None):
for key, value in metrics.items():
if filter_keys is not None and key in filter_keys:
key = filter_keys[key]
elif filter_keys is not None:
continue
self.append(key, value)
def update(self, metrics, filter_keys=None):
for key, value in metrics.items():
if filter_keys is not None and key in filter_keys:
key = filter_keys[key]
elif filter_keys is not None:
continue
self.append(key, value)
@staticmethod
def full_str(xstr, space):
xformat = "{:" + str(space) + "s}"
return xformat.format(str(xstr))
@staticmethod
def full_str(xstr, space):
xformat = '{:' + str(space) + 's}'
return xformat.format(str(xstr))
def info(self, keys: List[Text], separate: Text = '', space: int = 25, show=True):
avaliable_keys = []
for key in keys:
if key not in self.result:
print('There are invalid key [{:}].'.format(key))
else:
avaliable_keys.append(key)
head_str = separate.join([self.full_str(x, space) for x in avaliable_keys])
values = []
for key in avaliable_keys:
current_values = self._result[key]
mean = np.mean(current_values)
std = np.std(current_values)
values.append('{:.4f} $\pm$ {:.4f}'.format(mean, std))
value_str = separate.join([self.full_str(x, space) for x in values])
if show:
print(head_str)
print(value_str)
else:
return head_str, value_str
def info(self, keys: List[Text], separate: Text = "", space: int = 25, show=True):
avaliable_keys = []
for key in keys:
if key not in self.result:
print("There are invalid key [{:}].".format(key))
else:
avaliable_keys.append(key)
head_str = separate.join([self.full_str(x, space) for x in avaliable_keys])
values = []
for key in avaliable_keys:
current_values = self._result[key]
mean = np.mean(current_values)
std = np.std(current_values)
values.append("{:.4f} $\pm$ {:.4f}".format(mean, std))
value_str = separate.join([self.full_str(x, space) for x in values])
if show:
print(head_str)
print(value_str)
else:
return head_str, value_str
def compare_results(heads, values, names, space=10):
for idx, x in enumerate(heads):
assert x == heads[0], '[{:}] {:} vs {:}'.format(idx, x, heads[0])
new_head = QResult.full_str('Name', space) + heads[0]
print(new_head)
for name, value in zip(names, values):
xline = QResult.full_str(name, space) + value
print(xline)
for idx, x in enumerate(heads):
assert x == heads[0], "[{:}] {:} vs {:}".format(idx, x, heads[0])
new_head = QResult.full_str("Name", space) + heads[0]
print(new_head)
for name, value in zip(names, values):
xline = QResult.full_str(name, space) + value
print(xline)
def filter_finished(recorders):
@ -92,20 +91,22 @@ def main(xargs):
R.reset_default_uri(xargs.save_dir)
experiments = R.list_experiments()
key_map = {"IC": "IC",
"ICIR": "ICIR",
"Rank IC": "Rank_IC",
"Rank ICIR": "Rank_ICIR",
"excess_return_with_cost.annualized_return": "Annualized_Return",
"excess_return_with_cost.information_ratio": "Information_Ratio",
"excess_return_with_cost.max_drawdown": "Max_Drawdown"}
key_map = {
"IC": "IC",
"ICIR": "ICIR",
"Rank IC": "Rank_IC",
"Rank ICIR": "Rank_ICIR",
"excess_return_with_cost.annualized_return": "Annualized_Return",
"excess_return_with_cost.information_ratio": "Information_Ratio",
"excess_return_with_cost.max_drawdown": "Max_Drawdown",
}
all_keys = list(key_map.values())
print("There are {:} experiments.".format(len(experiments)))
head_strs, value_strs, names = [], [], []
for idx, (key, experiment) in enumerate(experiments.items()):
if experiment.id == '0':
continue
if experiment.id == "0":
continue
recorders = experiment.list_recorders()
recorders, not_finished = filter_finished(recorders)
print(
@ -115,7 +116,7 @@ def main(xargs):
)
result = QResult()
for recorder_id, recorder in recorders.items():
result.update(recorder.list_metrics(), key_map)
result.update(recorder.list_metrics(), key_map)
head_str, value_str = result.info(all_keys, show=False)
head_strs.append(head_str)
value_strs.append(value_str)

View File

@ -4,7 +4,7 @@
# Refer to:
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py
# python exps/trading/workflow_tt.py --market all
# python exps/trading/workflow_tt.py --market all --gpu 1
#####################################################
import sys, argparse
from pathlib import Path
@ -13,6 +13,10 @@ lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures.q_exps import update_gpu
from procedures.q_exps import update_market
from procedures.q_exps import run_exp
import qlib
from qlib.config import C
from qlib.config import REG_CN
@ -100,44 +104,23 @@ def main(xargs):
},
]
task = dict(model=model_config, dataset=dataset_config, record=record_config)
provider_uri = "~/.qlib/qlib_data/cn_data"
qlib.init(provider_uri=provider_uri, region=REG_CN)
# start exp to train model
with R.start(experiment_name="tt_model", uri=xargs.save_dir + "-" + xargs.market):
set_log_basic_config(R.get_recorder().root_uri / "log.log")
model = init_instance_by_config(model_config)
dataset = init_instance_by_config(dataset_config)
R.log_params(**flatten_dict(task))
model.fit(dataset)
R.save_objects(trained_model=model)
# prediction
recorder = R.get_recorder()
print(recorder)
for record in task["record"]:
record = record.copy()
if record["class"] == "SignalRecord":
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
record["kwargs"].update(srconf)
sr = init_instance_by_config(record)
sr.generate()
else:
rconf = {"recorder": recorder}
record["kwargs"].update(rconf)
ar = init_instance_by_config(record)
ar.generate()
dataset = init_instance_by_config(dataset_config)
for irun in range(xargs.times):
xmodel_config = model_config.copy()
xmodel_config = update_gpu(xmodel_config, xags.gpu)
task = dict(model=xmodel_config, dataset=dataset_config, record=record_config)
run_exp(task_config, dataset, "Transformer", "recorder-{:02d}-{:02d}".format(irun, xargs.times), xargs.save_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Vanilla Transformable Transformer")
parser.add_argument("--save_dir", type=str, default="./outputs/tt-ml-runs", help="The checkpoint directory.")
parser.add_argument("--times", type=int, default=10, help="The repeated run times.")
parser.add_argument("--gpu", type=int, default=0, help="The GPU ID used for train / test.")
parser.add_argument("--market", type=str, default="csi300", help="The market indicator.")
args = parser.parse_args()
provider_uri = "~/.qlib/qlib_data/cn_data"
qlib.init(provider_uri=provider_uri, region=REG_CN)
main(args)

63
lib/procedures/q_exps.py Normal file
View File

@ -0,0 +1,63 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
#####################################################
import qlib
from qlib.utils import init_instance_by_config
from qlib.workflow import R
from qlib.utils import flatten_dict
from qlib.log import set_log_basic_config
def update_gpu(config, gpu):
config = config.copy()
if "task" in config and "GPU" in config["task"]["model"]:
config["task"]["model"]["GPU"] = gpu
elif "model" in config and "GPU" in config["model"]:
config["model"]["GPU"] = gpu
elif "GPU" in config:
config["GPU"] = gpu
return config
def update_market(config, market):
config = config.copy()
config["market"] = market
config["data_handler_config"]["instruments"] = market
return config
def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
# model initiaiton
print("")
print("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri))
print("dataset={:}".format(dataset))
model = init_instance_by_config(task_config["model"])
# start exp
with R.start(experiment_name=experiment_name, recorder_name=recorder_name, uri=uri):
log_file = R.get_recorder().root_uri / "{:}.log".format(experiment_name)
set_log_basic_config(log_file)
# train model
R.log_params(**flatten_dict(task_config))
model.fit(dataset)
recorder = R.get_recorder()
R.save_objects(**{"model.pkl": model})
# generate records: prediction, backtest, and analysis
for record in task_config["record"]:
record = record.copy()
if record["class"] == "SignalRecord":
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
record["kwargs"].update(srconf)
sr = init_instance_by_config(record)
sr.generate()
else:
rconf = {"recorder": recorder}
record["kwargs"].update(rconf)
ar = init_instance_by_config(record)
ar.generate()