update scripts
This commit is contained in:
		
							
								
								
									
										15
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										15
									
								
								README.md
									
									
									
									
									
								
							| @@ -16,7 +16,20 @@ Searching CNNs | ||||
| ``` | ||||
| ``` | ||||
|  | ||||
| Train the Searched RNN | ||||
| Train the searched CNN on CIFAR | ||||
| ``` | ||||
| bash ./scripts-cnn/train-imagenet.sh 0 GDAS_F1 52 14 | ||||
| bash ./scripts-cnn/train-imagenet.sh 0 GDAS_V1 50 14 | ||||
| ``` | ||||
|  | ||||
| Train the searched CNN on ImageNet | ||||
| ``` | ||||
| bash ./scripts-cnn/train-imagenet.sh 0 GDAS_F1 52 14 | ||||
| bash ./scripts-cnn/train-imagenet.sh 0 GDAS_V1 50 14 | ||||
| ``` | ||||
|  | ||||
|  | ||||
| Train the searched RNN | ||||
| ``` | ||||
| bash ./scripts-rnn/train-PTB.sh 0 DARTS_V1 | ||||
| bash ./scripts-rnn/train-PTB.sh 0 DARTS_V2 | ||||
|   | ||||
| @@ -1,3 +1,4 @@ | ||||
| # DARTS First Order, Refer to https://github.com/quark0/darts | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
|   | ||||
| @@ -13,25 +13,11 @@ if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from utils import AverageMeter, time_string, convert_secs2time | ||||
| from utils import print_log, obtain_accuracy | ||||
| from utils import Cutout, count_parameters_in_MB | ||||
| from nas import DARTS_V1, DARTS_V2, NASNet, PNASNet, AmoebaNet, ENASNet | ||||
| from nas import DMS_V1, DMS_F1, GDAS_CC | ||||
| from meta_nas import META_V1, META_V2 | ||||
| from nas import model_types as models | ||||
| from train_utils import main_procedure | ||||
| from train_utils_imagenet import main_procedure_imagenet | ||||
| from scheduler import load_config | ||||
|  | ||||
| models = {'DARTS_V1': DARTS_V1, | ||||
|           'DARTS_V2': DARTS_V2, | ||||
|           'NASNet'  : NASNet, | ||||
|           'PNASNet' : PNASNet, | ||||
|           'ENASNet' : ENASNet, | ||||
|           'DMS_V1'  : DMS_V1, | ||||
|           'DMS_F1'  : DMS_F1, | ||||
|           'GDAS_CC' : GDAS_CC, | ||||
|           'META_V1' : META_V1, | ||||
|           'META_V2' : META_V2, | ||||
|           'AmoebaNet' : AmoebaNet} | ||||
|  | ||||
|  | ||||
| parser = argparse.ArgumentParser("cifar") | ||||
| parser.add_argument('--data_path',         type=str,   help='Path to dataset') | ||||
|   | ||||
| @@ -10,6 +10,7 @@ from utils import time_string, convert_secs2time | ||||
| from utils import count_parameters_in_MB | ||||
| from utils import Cutout | ||||
| from nas import NetworkCIFAR as Network | ||||
| from datasets import get_datasets | ||||
|  | ||||
| def obtain_best(accuracies): | ||||
|   if len(accuracies) == 0: return (0, 0) | ||||
| @@ -17,38 +18,10 @@ def obtain_best(accuracies): | ||||
|   s2b = sorted( tops ) | ||||
|   return s2b[-1] | ||||
|  | ||||
|  | ||||
| def main_procedure(config, dataset, data_path, args, genotype, init_channels, layers, log): | ||||
|    | ||||
|   # Mean + Std | ||||
|   if dataset == 'cifar10': | ||||
|     mean = [x / 255 for x in [125.3, 123.0, 113.9]] | ||||
|     std = [x / 255 for x in [63.0, 62.1, 66.7]] | ||||
|   elif dataset == 'cifar100': | ||||
|     mean = [x / 255 for x in [129.3, 124.1, 112.4]] | ||||
|     std = [x / 255 for x in [68.2, 65.4, 70.4]] | ||||
|   else: | ||||
|     raise TypeError("Unknow dataset : {:}".format(dataset)) | ||||
|   # Dataset Transformation | ||||
|   if dataset == 'cifar10' or dataset == 'cifar100': | ||||
|     lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), | ||||
|              transforms.Normalize(mean, std)] | ||||
|     if config.cutout > 0 : lists += [Cutout(config.cutout)] | ||||
|     train_transform = transforms.Compose(lists) | ||||
|     test_transform  = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) | ||||
|   else: | ||||
|     raise TypeError("Unknow dataset : {:}".format(dataset)) | ||||
|   # Dataset Defination | ||||
|   if dataset == 'cifar10': | ||||
|     train_data = dset.CIFAR10(data_path, train= True, transform=train_transform, download=True) | ||||
|     test_data  = dset.CIFAR10(data_path, train=False, transform=test_transform , download=True) | ||||
|     class_num  = 10 | ||||
|   elif dataset == 'cifar100': | ||||
|     train_data = dset.CIFAR100(data_path, train= True, transform=train_transform, download=True) | ||||
|     test_data  = dset.CIFAR100(data_path, train=False, transform=test_transform , download=True) | ||||
|     class_num  = 100 | ||||
|   else: | ||||
|     raise TypeError("Unknow dataset : {:}".format(dataset)) | ||||
|  | ||||
|   train_data, test_data, class_num = get_datasets(dataset, data_path, args.cutout) | ||||
|  | ||||
|   print_log('-------------------------------------- main-procedure', log) | ||||
|   print_log('config        : {:}'.format(config), log) | ||||
|   | ||||
| @@ -12,6 +12,7 @@ from utils import count_parameters_in_MB | ||||
| from utils import print_FLOPs | ||||
| from utils import Cutout | ||||
| from nas import NetworkImageNet as Network | ||||
| from datasets import get_datasets | ||||
|  | ||||
|  | ||||
| def obtain_best(accuracies): | ||||
| @@ -40,30 +41,7 @@ class CrossEntropyLabelSmooth(nn.Module): | ||||
| def main_procedure_imagenet(config, data_path, args, genotype, init_channels, layers, log): | ||||
|    | ||||
|   # training data and testing data | ||||
|   traindir = os.path.join(data_path, 'train') | ||||
|   validdir = os.path.join(data_path, 'val') | ||||
|   normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | ||||
|   train_data = dset.ImageFolder( | ||||
|     traindir, | ||||
|     transforms.Compose([ | ||||
|       transforms.RandomResizedCrop(224), | ||||
|       transforms.RandomHorizontalFlip(), | ||||
|       transforms.ColorJitter( | ||||
|         brightness=0.4, | ||||
|         contrast=0.4, | ||||
|         saturation=0.4, | ||||
|         hue=0.2), | ||||
|       transforms.ToTensor(), | ||||
|       normalize, | ||||
|     ])) | ||||
|   valid_data = dset.ImageFolder( | ||||
|     validdir, | ||||
|     transforms.Compose([ | ||||
|       transforms.Resize(256), | ||||
|       transforms.CenterCrop(224), | ||||
|       transforms.ToTensor(), | ||||
|       normalize, | ||||
|     ])) | ||||
|   train_data, valid_data, class_num = get_datasets('imagenet-1k', data_path, -1) | ||||
|  | ||||
|   train_queue = torch.utils.data.DataLoader( | ||||
|     train_data, batch_size=config.batch_size, shuffle= True, pin_memory=True, num_workers=args.workers) | ||||
| @@ -73,7 +51,6 @@ def main_procedure_imagenet(config, data_path, args, genotype, init_channels, la | ||||
|  | ||||
|   class_num   = 1000 | ||||
|  | ||||
|  | ||||
|   print_log('-------------------------------------- main-procedure', log) | ||||
|   print_log('config        : {:}'.format(config), log) | ||||
|   print_log('genotype      : {:}'.format(genotype), log) | ||||
| @@ -98,8 +75,7 @@ def main_procedure_imagenet(config, data_path, args, genotype, init_channels, la | ||||
|   criterion_smooth = CrossEntropyLabelSmooth(class_num, config.label_smooth).cuda() | ||||
|  | ||||
|  | ||||
|   optimizer = torch.optim.SGD(model.parameters(), config.LR, momentum=config.momentum, weight_decay=config.decay) | ||||
|   #optimizer = torch.optim.SGD(model.parameters(), config.LR, momentum=config.momentum, weight_decay=config.decay, nestero=True) | ||||
|   optimizer = torch.optim.SGD(model.parameters(), config.LR, momentum=config.momentum, weight_decay=config.decay, nestero=True) | ||||
|   if config.type == 'cosine': | ||||
|     scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(config.epochs)) | ||||
|   elif config.type == 'steplr': | ||||
|   | ||||
| @@ -1,3 +1,4 @@ | ||||
| from .MetaBatchSampler import MetaBatchSampler | ||||
| from .TieredImageNet import TieredImageNet | ||||
| from .LanguageDataset import Corpus | ||||
| from .get_dataset_with_transform import get_datasets | ||||
|   | ||||
							
								
								
									
										74
									
								
								lib/datasets/get_dataset_with_transform.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								lib/datasets/get_dataset_with_transform.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,74 @@ | ||||
| import os, sys, torch | ||||
| import os.path as osp | ||||
| import torchvision.datasets as dset | ||||
| import torch.backends.cudnn as cudnn | ||||
| import torchvision.transforms as transforms | ||||
|  | ||||
| from utils import Cutout | ||||
| from .TieredImageNet import TieredImageNet | ||||
|  | ||||
| Dataset2Class = {'cifar10' : 10, | ||||
|                  'cifar100': 100, | ||||
|                  'tiered'  : -1, | ||||
|                  'imagnet-1k'  : 1000, | ||||
|                  'imagenet-100': 100} | ||||
|  | ||||
|  | ||||
| def get_datasets(name, root, cutout): | ||||
|  | ||||
|   # Mean + Std | ||||
|   if name == 'cifar10': | ||||
|     mean = [x / 255 for x in [125.3, 123.0, 113.9]] | ||||
|     std = [x / 255 for x in [63.0, 62.1, 66.7]] | ||||
|   elif name == 'cifar100': | ||||
|     mean = [x / 255 for x in [129.3, 124.1, 112.4]] | ||||
|     std = [x / 255 for x in [68.2, 65.4, 70.4]] | ||||
|   elif name == 'tiered': | ||||
|     mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] | ||||
|   elif name == 'imagnet-1k' or name == 'imagenet-100': | ||||
|     mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | ||||
|   else: raise TypeError("Unknow dataset : {:}".format(name)) | ||||
|  | ||||
|  | ||||
|   # Data Argumentation | ||||
|   if name == 'cifar10' or name == 'cifar100': | ||||
|     lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), | ||||
|              transforms.Normalize(mean, std)] | ||||
|     if cutout > 0 : lists += [Cutout(cutout)] | ||||
|     train_transform = transforms.Compose(lists) | ||||
|     test_transform  = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) | ||||
|   elif name == 'tiered': | ||||
|     lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(80, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)] | ||||
|     if cutout > 0 : lists += [Cutout(cutout)] | ||||
|     train_transform = transforms.Compose(lists) | ||||
|     test_transform  = transforms.Compose([transforms.CenterCrop(80), transforms.ToTensor(), transforms.Normalize(mean, std)]) | ||||
|   elif name == 'imagnet-1k' or name == 'imagenet-100': | ||||
|     normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | ||||
|     train_transform = transforms.Compose([ | ||||
|       transforms.RandomResizedCrop(224), | ||||
|       transforms.RandomHorizontalFlip(), | ||||
|       transforms.ColorJitter( | ||||
|         brightness=0.4, | ||||
|         contrast=0.4, | ||||
|         saturation=0.4, | ||||
|         hue=0.2), | ||||
|       transforms.ToTensor(), | ||||
|       normalize, | ||||
|     ]) | ||||
|     test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize]) | ||||
|   else: raise TypeError("Unknow dataset : {:}".format(name)) | ||||
|     train_data = TieredImageNet(root, 'train-val', train_transform) | ||||
|     test_data = None | ||||
|   if name == 'cifar10': | ||||
|     train_data = dset.CIFAR10(root, train=True, transform=train_transform, download=True) | ||||
|     test_data  = dset.CIFAR10(root, train=True, transform=test_transform , download=True) | ||||
|   elif name == 'cifar100': | ||||
|     train_data = dset.CIFAR100(root, train=True, transform=train_transform, download=True) | ||||
|     test_data  = dset.CIFAR100(root, train=True, transform=test_transform , download=True) | ||||
|   elif name == 'imagnet-1k' or name == 'imagenet-100': | ||||
|     train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform) | ||||
|     test_data  = dset.ImageFolder(osp.join(root, 'val'), train_transform) | ||||
|   else: raise TypeError("Unknow dataset : {:}".format(name)) | ||||
|    | ||||
|   class_num = Dataset2Class[name] | ||||
|   return train_data, test_data, class_num | ||||
| @@ -1,4 +0,0 @@ | ||||
| rm -rf pytorch | ||||
| git clone https://github.com/pytorch/pytorch.git | ||||
| cp -r ./pytorch/torch/nn xnn | ||||
| rm -rf pytorch | ||||
| @@ -11,8 +11,6 @@ from .CifarNet import NetworkCIFAR | ||||
| from .ImageNet import NetworkImageNet | ||||
|  | ||||
| # genotypes | ||||
| from .genotypes import DARTS_V1, DARTS_V2 | ||||
| from .genotypes import NASNet, PNASNet, AmoebaNet, ENASNet | ||||
| from .genotypes import DMS_V1, DMS_F1, GDAS_CC | ||||
| from .genotypes import model_types | ||||
|  | ||||
| from .construct_utils import return_alphas_str | ||||
|   | ||||
| @@ -179,7 +179,7 @@ ENASNet = Genotype( | ||||
| DARTS = DARTS_V2 | ||||
|  | ||||
| # Search by normal and reduce | ||||
| DMS_V1 = Genotype( | ||||
| GDAS_V1 = Genotype( | ||||
|   normal=[('skip_connect', 0, 0.13017432391643524), ('skip_connect', 1, 0.12947972118854523), ('skip_connect', 0, 0.13062666356563568), ('sep_conv_5x5', 2, 0.12980839610099792), ('sep_conv_3x3', 3, 0.12923765182495117), ('skip_connect', 0, 0.12901571393013), ('sep_conv_5x5', 4, 0.12938997149467468), ('sep_conv_3x3', 3, 0.1289220005273819)], | ||||
|   normal_concat=range(2, 6), | ||||
|   reduce=[('sep_conv_5x5', 0, 0.12862831354141235), ('sep_conv_3x3', 1, 0.12783904373645782), ('sep_conv_5x5', 2, 0.12725995481014252), ('sep_conv_5x5', 1, 0.12705285847187042), ('dil_conv_5x5', 2, 0.12797553837299347), ('sep_conv_3x3', 1, 0.12737272679805756), ('sep_conv_5x5', 0, 0.12833961844444275), ('sep_conv_5x5', 1, 0.12758426368236542)], | ||||
| @@ -187,7 +187,7 @@ DMS_V1 = Genotype( | ||||
| ) | ||||
|  | ||||
| # Search by normal and fixing reduction | ||||
| DMS_F1 = Genotype( | ||||
| GDAS_F1 = Genotype( | ||||
|   normal=[('skip_connect', 0, 0.16), ('skip_connect', 1, 0.13), ('skip_connect', 0, 0.17), ('sep_conv_3x3', 2, 0.15), ('skip_connect', 0, 0.17), ('sep_conv_3x3', 2, 0.15), ('skip_connect', 0, 0.16), ('sep_conv_3x3', 2, 0.15)], | ||||
|   normal_concat=[2, 3, 4, 5], | ||||
|   reduce=None, | ||||
| @@ -201,3 +201,13 @@ GDAS_CC = Genotype( | ||||
|   reduce=None, | ||||
|   reduce_concat=range(2, 6) | ||||
| ) | ||||
|  | ||||
| model_types = {'DARTS_V1': DARTS_V1, | ||||
|                'DARTS_V2': DARTS_V2, | ||||
|                'NASNet'  : NASNet, | ||||
|                'PNASNet' : PNASNet,  | ||||
|                'AmoebaNet': AmoebaNet, | ||||
|                'ENASNet' : ENASNet, | ||||
|                'GDAS_V1' : GDAS_V1, | ||||
|                'GDAS_F1' : GDAS_F1, | ||||
|                'GDAS_CC' : GDAS_CC} | ||||
|   | ||||
| @@ -1,7 +1,8 @@ | ||||
| #!/usr/bin/env sh | ||||
| if [ "$#" -ne 2 ] ;then | ||||
| # bash scripts-cnn/train-cifar.sh 0 GDAS cifar10 | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for the GPUs, the architecture" | ||||
|   echo "Need 3 parameters for the GPUs, the architecture, and the dataset-name" | ||||
|   exit 1                | ||||
| fi  | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -13,7 +14,7 @@ fi | ||||
| 
 | ||||
| gpus=$1 | ||||
| arch=$2 | ||||
| dataset=cifar100 | ||||
| dataset=$3 | ||||
| SAVED=./snapshots/NAS/${arch}-${dataset}-E600 | ||||
| 
 | ||||
| CUDA_VISIBLE_DEVICES=${gpus} python ./exps-nas/train_base.py \ | ||||
| @@ -18,7 +18,7 @@ channels=$3 | ||||
| layers=$4 | ||||
| SAVED=./snapshots/NAS/${arch}-${dataset}-C${channels}-L${layers}-E250 | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES=${gpus} python ./exps-nas/train_base.py \ | ||||
| CUDA_VISIBLE_DEVICES=${gpus} python ./exps-cnn/train_base.py \ | ||||
| 	--data_path $TORCH_HOME/ILSVRC2012 \ | ||||
| 	--dataset ${dataset} --arch ${arch} \ | ||||
| 	--save_path ${SAVED} \ | ||||
|   | ||||
| @@ -1,25 +0,0 @@ | ||||
| #!/usr/bin/env sh | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for the GPUs and the architecture" | ||||
|   exit 1                | ||||
| fi  | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| gpus=$1 | ||||
| arch=$2 | ||||
| dataset=cifar10 | ||||
| SAVED=./snapshots/NAS/${arch}-${dataset}-E100 | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES=${gpus} python ./exps-nas/train_base.py \ | ||||
| 	--data_path $TORCH_HOME/cifar.python \ | ||||
| 	--dataset ${dataset} --arch ${arch} \ | ||||
| 	--save_path ${SAVED} \ | ||||
| 	--grad_clip 5 \ | ||||
| 	--model_config ./configs/nas-cifar-cos-simple.config \ | ||||
| 	--print_freq 100 --workers 8 | ||||
| @@ -1,26 +0,0 @@ | ||||
| #!/usr/bin/env sh | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for the GPUs, the architecture" | ||||
|   exit 1                | ||||
| fi  | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| gpus=$1 | ||||
| arch=$2 | ||||
| dataset=cifar10 | ||||
| SAVED=./snapshots/NAS/${arch}-${dataset}-E600 | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES=${gpus} python ./exps-nas/train_base.py \ | ||||
| 	--data_path $TORCH_HOME/cifar.python \ | ||||
| 	--dataset ${dataset} --arch ${arch} \ | ||||
| 	--save_path ${SAVED} \ | ||||
| 	--grad_clip 5 \ | ||||
| 	--init_channels 36 --layers 20 \ | ||||
| 	--model_config ./configs/nas-cifar-cos.config \ | ||||
| 	--print_freq 100 --workers 8 | ||||
		Reference in New Issue
	
	Block a user