update README

This commit is contained in:
D-X-Y 2019-11-21 00:52:17 +11:00
parent 5bd503aed4
commit 487fec21bf
4 changed files with 73 additions and 8 deletions

View File

@ -22,6 +22,8 @@ from utils import get_model_infos
flop, param = get_model_infos(net, (1,3,32,32))
```
2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/NAS-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py).
## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717)
In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network.

1
exps/vis/random-nn.py Normal file
View File

@ -0,0 +1 @@
from graphviz import Digraph

67
exps/vis/show-results.py Normal file
View File

@ -0,0 +1,67 @@
# python ./vis-exps/show-results.py
import os, sys
from pathlib import Path
import torch
import numpy as np
from collections import OrderedDict
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from aa_nas_api import AANASBenchAPI
api = AANASBenchAPI('./output/AA-NAS-BENCH-4/simplifies/C16-N5-final-infos.pth')
def plot_results_nas(dataset, xset, file_name, y_lims):
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
root = Path('./output/cell-search-tiny-vis').resolve()
print ('root path : {:}'.format( root ))
root.mkdir(parents=True, exist_ok=True)
checkpoints = ['./output/cell-search-tiny/R-EA-cifar10/results.pth',
'./output/cell-search-tiny/REINFORCE-cifar10/results.pth',
'./output/cell-search-tiny/RAND-cifar10/results.pth',
'./output/cell-search-tiny/BOHB-cifar10/results.pth'
]
legends, indexes = ['REA', 'REINFORCE', 'RANDOM', 'BOHB'], None
All_Accs = OrderedDict()
for legend, checkpoint in zip(legends, checkpoints):
all_indexes = torch.load(checkpoint, map_location='cpu')
accuracies = []
for x in all_indexes:
info = api.arch2infos[ x ]
_, accy = info.get_metrics(dataset, xset, None, False)
accuracies.append( accy )
if indexes is None: indexes = list(range(len(all_indexes)))
All_Accs[legend] = sorted(accuracies)
color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
dpi, width, height = 300, 3400, 2600
LabelSize, LegendFontsize = 26, 26
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
x_axis = np.arange(0, 600)
plt.xlim(0, max(indexes))
plt.ylim(y_lims[0], y_lims[1])
interval_x, interval_y = 100, y_lims[2]
plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize)
plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize)
plt.grid()
plt.xlabel('The index of runs', fontsize=LabelSize)
plt.ylabel('The accuracy (%)', fontsize=LabelSize)
for idx, legend in enumerate(legends):
plt.plot(indexes, All_Accs[legend], color=color_set[idx], linestyle='-', label='{:}'.format(legend), lw=2)
print ('{:} : mean = {:}, std = {:}'.format(legend, np.mean(All_Accs[legend]), np.std(All_Accs[legend])))
plt.legend(loc=4, fontsize=LegendFontsize)
save_path = root / '{:}-{:}-{:}'.format(dataset, xset, file_name)
print('save figure into {:}\n'.format(save_path))
fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf')
if __name__ == '__main__':
plot_results_nas('cifar10', 'ori-test', 'nas-com.pdf', (85,95, 1))
plot_results_nas('cifar100', 'x-valid', 'nas-com.pdf', (55,75, 3))
plot_results_nas('cifar100', 'x-test' , 'nas-com.pdf', (55,75, 3))
plot_results_nas('ImageNet16-120', 'x-valid', 'nas-com.pdf', (35,50, 3))
plot_results_nas('ImageNet16-120', 'x-test' , 'nas-com.pdf', (35,50, 3))

View File

@ -74,20 +74,15 @@ class Structure:
nodes[i+1] = sum(sums) > 0
return nodes[len(self.nodes)]
def to_unique_str(self, consider_zero=False):
def to_unique_str(self):
# this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation
# two operations are special, i.e., none and skip_connect
nodes = {0: '0'}
for i_node, node_info in enumerate(self.nodes):
cur_node = []
for op, xin in node_info:
if consider_zero:
if op == 'none' or nodes[xin] == '#': x = '#' # zero
elif op == 'skip_connect': x = nodes[xin]
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
else:
if op == 'skip_connect': x = nodes[xin]
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
if op == 'skip_connect': x = nodes[xin]
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
cur_node.append(x)
nodes[i_node+1] = '+'.join( sorted(cur_node) )
return nodes[ len(self.nodes) ]