master -> main
This commit is contained in:
		
							
								
								
									
										2
									
								
								.github/CONTRIBUTING.md
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/CONTRIBUTING.md
									
									
									
									
										vendored
									
									
								
							| @@ -19,7 +19,7 @@ This section guides you through submitting a bug report for AutoDL-Projects. | |||||||
| Following these guidelines helps maintainers and the community understand your report :pencil:, reproduce the behavior :computer: :computer:, and find related reports :mag_right:. | Following these guidelines helps maintainers and the community understand your report :pencil:, reproduce the behavior :computer: :computer:, and find related reports :mag_right:. | ||||||
|  |  | ||||||
| When you are creating a bug report, please include as many details as possible. | When you are creating a bug report, please include as many details as possible. | ||||||
| Fill out [the required template](https://github.com/D-X-Y/AutoDL-Projects/blob/master/.github/ISSUE_TEMPLATE/bug-report.md). The information it asks for helps us resolve issues faster. | Fill out [the required template](https://github.com/D-X-Y/AutoDL-Projects/blob/main/.github/ISSUE_TEMPLATE/bug-report.md). The information it asks for helps us resolve issues faster. | ||||||
|  |  | ||||||
| > **Note:** If you find a **Closed** issue that seems like it is the same thing that you're experiencing, open a new issue and include a link to the original issue in the body of your new one. | > **Note:** If you find a **Closed** issue that seems like it is the same thing that you're experiencing, open a new issue and include a link to the original issue in the body of your new one. | ||||||
|  |  | ||||||
|   | |||||||
							
								
								
									
										3
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
								
							| @@ -1,6 +1,3 @@ | |||||||
| [submodule "qlib-git"] |  | ||||||
| 	path = .latent-data/qlib |  | ||||||
| 	url = git@github.com:microsoft/qlib.git |  | ||||||
| [submodule ".latent-data/qlib"] | [submodule ".latent-data/qlib"] | ||||||
| 	path = .latent-data/qlib | 	path = .latent-data/qlib | ||||||
| 	url = git@github.com:microsoft/qlib.git | 	url = git@github.com:microsoft/qlib.git | ||||||
|   | |||||||
							
								
								
									
										18
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										18
									
								
								README.md
									
									
									
									
									
								
							| @@ -7,7 +7,7 @@ | |||||||
|  |  | ||||||
| Automated Deep Learning Projects (AutoDL-Projects) is an open source, lightweight, but useful project for everyone. | Automated Deep Learning Projects (AutoDL-Projects) is an open source, lightweight, but useful project for everyone. | ||||||
| This project implemented several neural architecture search (NAS) and hyper-parameter optimization (HPO) algorithms. | This project implemented several neural architecture search (NAS) and hyper-parameter optimization (HPO) algorithms. | ||||||
| 中文介绍见[README_CN.md](README_CN.md) | 中文介绍见[README_CN.md](https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/README_CN.md) | ||||||
|  |  | ||||||
| **Who should consider using AutoDL-Projects** | **Who should consider using AutoDL-Projects** | ||||||
|  |  | ||||||
| @@ -36,38 +36,38 @@ At this moment, this project provides the following algorithms and scripts to ru | |||||||
|     <td rowspan="6" align="center" valign="middle" halign="middle"> NAS </td> |     <td rowspan="6" align="center" valign="middle" halign="middle"> NAS </td> | ||||||
|     <td align="center" valign="middle"> TAS </td> |     <td align="center" valign="middle"> TAS </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1905.09717">Network Pruning via Transformable Architecture Search</a> </td> |     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1905.09717">Network Pruning via Transformable Architecture Search</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NeurIPS-2019-TAS.md">NeurIPS-2019-TAS.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NeurIPS-2019-TAS.md">NeurIPS-2019-TAS.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (2-nd row) --> |     <tr> <!-- (2-nd row) --> | ||||||
|     <td align="center" valign="middle"> DARTS </td> |     <td align="center" valign="middle"> DARTS </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1806.09055">DARTS: Differentiable Architecture Search</a> </td> |     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1806.09055">DARTS: Differentiable Architecture Search</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICLR-2019-DARTS.md">ICLR-2019-DARTS.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/ICLR-2019-DARTS.md">ICLR-2019-DARTS.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (3-nd row) --> |     <tr> <!-- (3-nd row) --> | ||||||
|     <td align="center" valign="middle"> GDAS </td> |     <td align="center" valign="middle"> GDAS </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.04465">Searching for A Robust Neural Architecture in Four GPU Hours</a> </td> |     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.04465">Searching for A Robust Neural Architecture in Four GPU Hours</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/CVPR-2019-GDAS.md">CVPR-2019-GDAS.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/CVPR-2019-GDAS.md">CVPR-2019-GDAS.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (4-rd row) --> |     <tr> <!-- (4-rd row) --> | ||||||
|     <td align="center" valign="middle"> SETN </td> |     <td align="center" valign="middle"> SETN </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.05733">One-Shot Neural Architecture Search via Self-Evaluated Template Network</a> </td> |     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.05733">One-Shot Neural Architecture Search via Self-Evaluated Template Network</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICCV-2019-SETN.md">ICCV-2019-SETN.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/ICCV-2019-SETN.md">ICCV-2019-SETN.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (5-th row) --> |     <tr> <!-- (5-th row) --> | ||||||
|     <td align="center" valign="middle"> NAS-Bench-201 </td> |     <td align="center" valign="middle"> NAS-Bench-201 </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td> |     <td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (6-th row) --> |     <tr> <!-- (6-th row) --> | ||||||
|     <td align="center" valign="middle"> NATS-Bench </td> |     <td align="center" valign="middle"> NATS-Bench </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://xuanyidong.com/assets/projects/NATS-Bench"> NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size</a> </td> |     <td align="center" valign="middle"> <a href="https://xuanyidong.com/assets/projects/NATS-Bench"> NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NATS-Bench.md">NATS-Bench.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (7-th row) --> |     <tr> <!-- (7-th row) --> | ||||||
|     <td align="center" valign="middle"> ... </td> |     <td align="center" valign="middle"> ... </td> | ||||||
|     <td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td> |     <td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td> | ||||||
|     <td align="center" valign="middle"> Please check the original papers </td> |     <td align="center" valign="middle"> Please check the original papers </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a>  <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NAS-Bench-201.md">NAS-Bench-201.md</a>  <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NATS-Bench.md">NATS-Bench.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (start second block) --> |     <tr> <!-- (start second block) --> | ||||||
|     <td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td> |     <td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td> | ||||||
| @@ -79,7 +79,7 @@ At this moment, this project provides the following algorithms and scripts to ru | |||||||
|     <td rowspan="1" align="center" valign="middle" halign="middle"> Basic </td> |     <td rowspan="1" align="center" valign="middle" halign="middle"> Basic </td> | ||||||
|     <td align="center" valign="middle"> ResNet </td> |     <td align="center" valign="middle"> ResNet </td> | ||||||
|     <td align="center" valign="middle"> Deep Learning-based Image Classification </td> |     <td align="center" valign="middle"> Deep Learning-based Image Classification </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/BASELINE.md">BASELINE.md</a> </a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/BASELINE.md">BASELINE.md</a> </a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|  </tbody> |  </tbody> | ||||||
| </table> | </table> | ||||||
|   | |||||||
| @@ -22,7 +22,7 @@ from utils import get_model_infos | |||||||
| flop, param  = get_model_infos(net, (1,3,32,32)) | flop, param  = get_model_infos(net, (1,3,32,32)) | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| 2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | 2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/AutoDL-Projects/blob/main/lib/nas_infer_model/DXYs/genotypes.py). | ||||||
|  |  | ||||||
|  |  | ||||||
| ## Usage | ## Usage | ||||||
| @@ -34,7 +34,7 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  GDAS_V1 96 -1 | |||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1 | ||||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1 | CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1 | ||||||
| ``` | ``` | ||||||
| If you are interested in the configs of each NAS-searched architecture, they are defined at [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | If you are interested in the configs of each NAS-searched architecture, they are defined at [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/main/lib/nas_infer_model/DXYs/genotypes.py). | ||||||
|  |  | ||||||
| ### Searching on the NASNet search space | ### Searching on the NASNet search space | ||||||
|  |  | ||||||
|   | |||||||
| @@ -18,7 +18,7 @@ from utils import get_model_infos | |||||||
| flop, param  = get_model_infos(net, (1,3,32,32)) | flop, param  = get_model_infos(net, (1,3,32,32)) | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| 2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | 2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/AutoDL-Projects/blob/main/lib/nas_infer_model/DXYs/genotypes.py). | ||||||
|  |  | ||||||
|  |  | ||||||
| ## Usage | ## Usage | ||||||
|   | |||||||
| @@ -16,7 +16,7 @@ This command will start to use the first-order DARTS to search architectures on | |||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/DARTS1V-search-NASNet-space.sh cifar10 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/DARTS1V-search-NASNet-space.sh cifar10 -1 | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| After searching, if you want to train the searched architecture found by the above scripts, you need to add the config of that architecture (will be printed in log) in [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | After searching, if you want to train the searched architecture found by the above scripts, you need to add the config of that architecture (will be printed in log) in [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/main/lib/nas_infer_model/DXYs/genotypes.py). | ||||||
| In future, I will add a more eligent way to train the searched architecture from the DARTS search space. | In future, I will add a more eligent way to train the searched architecture from the DARTS search space. | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| # [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | # [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ||||||
|  |  | ||||||
| **Since our NAS-BENCH-201 has been extended to NATS-Bench, this `README` is deprecated and not maintained. Please use [NATS-Bench](https://github.com/D-X-Y/AutoDL-Projects/blob/master/docs/NATS-Bench.md), which has 5x more architecture information and faster API than NAS-BENCH-201.** | **Since our NAS-BENCH-201 has been extended to NATS-Bench, this `README` is deprecated and not maintained. Please use [NATS-Bench](https://github.com/D-X-Y/AutoDL-Projects/blob/main/docs/NATS-Bench.md), which has 5x more architecture information and faster API than NAS-BENCH-201.** | ||||||
|  |  | ||||||
| We propose an algorithm-agnostic NAS benchmark (NAS-Bench-201) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | We propose an algorithm-agnostic NAS benchmark (NAS-Bench-201) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | ||||||
| The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | ||||||
| @@ -44,7 +44,7 @@ It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). | |||||||
|  |  | ||||||
| ## How to Use NAS-Bench-201 | ## How to Use NAS-Bench-201 | ||||||
|  |  | ||||||
| **More usage can be found in [our test codes](https://github.com/D-X-Y/AutoDL-Projects/blob/master/exps/NAS-Bench-201/test-nas-api.py)**. | **More usage can be found in [our test codes](https://github.com/D-X-Y/AutoDL-Projects/blob/main/exps/NAS-Bench-201/test-nas-api.py)**. | ||||||
|  |  | ||||||
| 1. Creating an API instance from a file: | 1. Creating an API instance from a file: | ||||||
| ``` | ``` | ||||||
| @@ -161,7 +161,7 @@ api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-201-4-v1.0-arch | |||||||
| weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights. | weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights. | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_201_api/api_201.py#L142)): | To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/main/lib/nas_201_api/api_201.py#L142)): | ||||||
| ``` | ``` | ||||||
| api.get_more_info(112, 'cifar10', None, hp='200', is_random=True) | api.get_more_info(112, 'cifar10', None, hp='200', is_random=True) | ||||||
| # Query info of last training epoch for 112-th architecture | # Query info of last training epoch for 112-th architecture | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| # [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | # [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ||||||
|  |  | ||||||
| **Since our NAS-BENCH-201 has been extended to NATS-Bench, this README is deprecated and not maintained. Please use [NATS-Bench](https://github.com/D-X-Y/AutoDL-Projects/blob/master/docs/NATS-Bench.md), which has 5x more architecture information and faster API than NAS-BENCH-201.** | **Since our NAS-BENCH-201 has been extended to NATS-Bench, this README is deprecated and not maintained. Please use [NATS-Bench](https://github.com/D-X-Y/AutoDL-Projects/blob/main/docs/NATS-Bench.md), which has 5x more architecture information and faster API than NAS-BENCH-201.** | ||||||
|  |  | ||||||
| We propose an algorithm-agnostic NAS benchmark (NAS-Bench-201) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | We propose an algorithm-agnostic NAS benchmark (NAS-Bench-201) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | ||||||
| The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | ||||||
| @@ -42,7 +42,7 @@ It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). | |||||||
|  |  | ||||||
| ## How to Use NAS-Bench-201 | ## How to Use NAS-Bench-201 | ||||||
|  |  | ||||||
| **More usage can be found in [our test codes](https://github.com/D-X-Y/AutoDL-Projects/blob/master/exps/NAS-Bench-201/test-nas-api.py)**. | **More usage can be found in [our test codes](https://github.com/D-X-Y/AutoDL-Projects/blob/main/exps/NAS-Bench-201/test-nas-api.py)**. | ||||||
|  |  | ||||||
| 1. Creating an API instance from a file: | 1. Creating an API instance from a file: | ||||||
| ``` | ``` | ||||||
| @@ -159,7 +159,7 @@ api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-201-4-v1.0-arch | |||||||
| weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights. | weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights. | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_201_api/api_201.py#L142)): | To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/main/lib/nas_201_api/api_201.py#L142)): | ||||||
| ``` | ``` | ||||||
| api.get_more_info(112, 'cifar10', None, hp='200', is_random=True) | api.get_more_info(112, 'cifar10', None, hp='200', is_random=True) | ||||||
| # Query info of last training epoch for 112-th architecture | # Query info of last training epoch for 112-th architecture | ||||||
|   | |||||||
| @@ -31,7 +31,7 @@ args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel n | |||||||
|  |  | ||||||
| **Model Configuration** | **Model Configuration** | ||||||
|  |  | ||||||
| The searched shapes for ResNet-20/32/56/110/164 and ResNet-18/50 in Table 3/4 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/AutoDL-Projects/tree/master/configs/NeurIPS-2019). | The searched shapes for ResNet-20/32/56/110/164 and ResNet-18/50 in Table 3/4 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/AutoDL-Projects/tree/main/configs/NeurIPS-2019). | ||||||
|  |  | ||||||
| **Search for the depth configuration of ResNet** | **Search for the depth configuration of ResNet** | ||||||
| ``` | ``` | ||||||
|   | |||||||
| @@ -37,38 +37,38 @@ | |||||||
|     <td rowspan="6" align="center" valign="middle" halign="middle"> NAS </td> |     <td rowspan="6" align="center" valign="middle" halign="middle"> NAS </td> | ||||||
|     <td align="center" valign="middle"> TAS </td> |     <td align="center" valign="middle"> TAS </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1905.09717">Network Pruning via Transformable Architecture Search</a> </td> |     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1905.09717">Network Pruning via Transformable Architecture Search</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NeurIPS-2019-TAS.md">NeurIPS-2019-TAS.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NeurIPS-2019-TAS.md">NeurIPS-2019-TAS.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (2-nd row) --> |     <tr> <!-- (2-nd row) --> | ||||||
|     <td align="center" valign="middle"> DARTS </td> |     <td align="center" valign="middle"> DARTS </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1806.09055">DARTS: Differentiable Architecture Search</a> </td> |     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1806.09055">DARTS: Differentiable Architecture Search</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICLR-2019-DARTS.md">ICLR-2019-DARTS.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/ICLR-2019-DARTS.md">ICLR-2019-DARTS.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (3-nd row) --> |     <tr> <!-- (3-nd row) --> | ||||||
|     <td align="center" valign="middle"> GDAS </td> |     <td align="center" valign="middle"> GDAS </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.04465">Searching for A Robust Neural Architecture in Four GPU Hours</a> </td> |     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.04465">Searching for A Robust Neural Architecture in Four GPU Hours</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/CVPR-2019-GDAS.md">CVPR-2019-GDAS.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/CVPR-2019-GDAS.md">CVPR-2019-GDAS.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (4-rd row) --> |     <tr> <!-- (4-rd row) --> | ||||||
|     <td align="center" valign="middle"> SETN </td> |     <td align="center" valign="middle"> SETN </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.05733">One-Shot Neural Architecture Search via Self-Evaluated Template Network</a> </td> |     <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.05733">One-Shot Neural Architecture Search via Self-Evaluated Template Network</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICCV-2019-SETN.md">ICCV-2019-SETN.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/ICCV-2019-SETN.md">ICCV-2019-SETN.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (5-th row) --> |     <tr> <!-- (5-th row) --> | ||||||
|     <td align="center" valign="middle"> NAS-Bench-201 </td> |     <td align="center" valign="middle"> NAS-Bench-201 </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td> |     <td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (6-th row) --> |     <tr> <!-- (6-th row) --> | ||||||
|     <td align="center" valign="middle"> NATS-Bench </td> |     <td align="center" valign="middle"> NATS-Bench </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://xuanyidong.com/assets/projects/NATS-Bench"> NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size</a> </td> |     <td align="center" valign="middle"> <a href="https://xuanyidong.com/assets/projects/NATS-Bench"> NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size</a> </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NATS-Bench.md">NATS-Bench.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (7-th row) --> |     <tr> <!-- (7-th row) --> | ||||||
|     <td align="center" valign="middle"> ... </td> |     <td align="center" valign="middle"> ... </td> | ||||||
|     <td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td> |     <td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td> | ||||||
|     <td align="center" valign="middle"> Please check the original papers. </td> |     <td align="center" valign="middle"> Please check the original papers. </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NATS-Bench.md">NATS-Bench.md</a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|     <tr> <!-- (start second block) --> |     <tr> <!-- (start second block) --> | ||||||
|     <td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td> |     <td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td> | ||||||
| @@ -80,7 +80,7 @@ | |||||||
|     <td rowspan="1" align="center" valign="middle" halign="middle"> Basic </td> |     <td rowspan="1" align="center" valign="middle" halign="middle"> Basic </td> | ||||||
|     <td align="center" valign="middle"> ResNet </td> |     <td align="center" valign="middle"> ResNet </td> | ||||||
|     <td align="center" valign="middle"> Deep Learning-based Image Classification </td> |     <td align="center" valign="middle"> Deep Learning-based Image Classification </td> | ||||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/BASELINE.md">BASELINE.md</a> </a> </td> |     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/BASELINE.md">BASELINE.md</a> </a> </td> | ||||||
|     </tr> |     </tr> | ||||||
|  </tbody> |  </tbody> | ||||||
| </table> | </table> | ||||||
| @@ -8,7 +8,7 @@ | |||||||
| # - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | # - masking + sampling (mask_rl) from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||||
| # | # | ||||||
| # For simplicity, we use tas, mask_gumbel, and mask_rl to refer these three strategies. Their official implementations are at the following links: | # For simplicity, we use tas, mask_gumbel, and mask_rl to refer these three strategies. Their official implementations are at the following links: | ||||||
| # - TAS: https://github.com/D-X-Y/AutoDL-Projects/blob/master/docs/NeurIPS-2019-TAS.md | # - TAS: https://github.com/D-X-Y/AutoDL-Projects/blob/main/docs/NeurIPS-2019-TAS.md | ||||||
| # - FBNetV2: https://github.com/facebookresearch/mobile-vision | # - FBNetV2: https://github.com/facebookresearch/mobile-vision | ||||||
| # - TuNAS: https://github.com/google-research/google-research/tree/master/tunas | # - TuNAS: https://github.com/google-research/google-research/tree/master/tunas | ||||||
| #### | #### | ||||||
|   | |||||||
| @@ -244,7 +244,7 @@ class NASBench201API(NASBenchMetaAPI): | |||||||
|       arch_str: the input is a string indicates the architecture topology, such as |       arch_str: the input is a string indicates the architecture topology, such as | ||||||
|                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| |                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| | ||||||
|       search_space: a list of operation string, the default list is the search space for NAS-Bench-201 |       search_space: a list of operation string, the default list is the search space for NAS-Bench-201 | ||||||
|         the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24 |         the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/main/lib/models/cell_operations.py#L24 | ||||||
|     :return |     :return | ||||||
|       the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology |       the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology | ||||||
|     :usage |     :usage | ||||||
|   | |||||||
| @@ -306,7 +306,7 @@ class NATStopology(NASBenchMetaAPI): | |||||||
|       arch_str: the input is a string indicates the architecture topology, such as |       arch_str: the input is a string indicates the architecture topology, such as | ||||||
|                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| |                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| | ||||||
|       search_space: a list of operation string, the default list is the topology search space for NATS-BENCH. |       search_space: a list of operation string, the default list is the topology search space for NATS-BENCH. | ||||||
|         the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24 |         the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/main/lib/models/cell_operations.py#L24 | ||||||
|  |  | ||||||
|     Returns: |     Returns: | ||||||
|       the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology |       the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user