Update TAS abd FBV2 for NAS-Bench
This commit is contained in:
		| @@ -12,8 +12,8 @@ __all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_ci | ||||
|  | ||||
| # useful modules | ||||
| from config_utils import dict2config | ||||
| from .SharedUtils import change_key | ||||
| from .cell_searchs import CellStructure, CellArchitectures | ||||
| from models.SharedUtils import change_key | ||||
| from models.cell_searchs import CellStructure, CellArchitectures | ||||
|  | ||||
|  | ||||
| # Cell-based NAS Models | ||||
| @@ -27,6 +27,10 @@ def get_cell_based_tiny_net(config): | ||||
|       return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats) | ||||
|     except: | ||||
|       return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space) | ||||
|   elif super_type == 'search-shape': | ||||
|     from .shape_searchs import GenericNAS301Model | ||||
|     genotype = CellStructure.str2structure(config.genotype) | ||||
|     return GenericNAS301Model(config.candidate_Cs, config.max_num_Cs, genotype, config.num_classes, config.affine, config.track_running_stats) | ||||
|   elif super_type == 'nasnet-super': | ||||
|     from .cell_searchs import nasnet_super_nets as nas_super_nets | ||||
|     return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \ | ||||
|   | ||||
| @@ -5,13 +5,14 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
| from models.cell_operations import OPS | ||||
|  | ||||
|  | ||||
| # Cell for NAS-Bench-201 | ||||
| class InferCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, genotype, C_in, C_out, stride): | ||||
|   def __init__(self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True): | ||||
|     super(InferCell, self).__init__() | ||||
|  | ||||
|     self.layers  = nn.ModuleList() | ||||
| @@ -24,9 +25,9 @@ class InferCell(nn.Module): | ||||
|       cur_innod = [] | ||||
|       for (op_name, op_in) in node_info: | ||||
|         if op_in == 0: | ||||
|           layer = OPS[op_name](C_in , C_out, stride, True, True) | ||||
|           layer = OPS[op_name](C_in , C_out, stride, affine, track_running_stats) | ||||
|         else: | ||||
|           layer = OPS[op_name](C_out, C_out,      1, True, True) | ||||
|           layer = OPS[op_name](C_out, C_out,      1, affine, track_running_stats) | ||||
|         cur_index.append( len(self.layers) ) | ||||
|         cur_innod.append( op_in ) | ||||
|         self.layers.append( layer ) | ||||
|   | ||||
| @@ -74,17 +74,17 @@ class DualSepConv(nn.Module): | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|  | ||||
|   def __init__(self, inplanes, planes, stride, affine=True): | ||||
|   def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine) | ||||
|     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, 1, 1, affine) | ||||
|     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine, track_running_stats) | ||||
|     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, 1, 1, affine, track_running_stats) | ||||
|     if stride == 2: | ||||
|       self.downsample = nn.Sequential( | ||||
|                            nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                            nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine) | ||||
|       self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine, track_running_stats) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.in_dim  = inplanes | ||||
|   | ||||
| @@ -6,3 +6,4 @@ from .SearchCifarResNet_depth import SearchDepthCifarResNet | ||||
| from .SearchCifarResNet       import SearchShapeCifarResNet | ||||
| from .SearchSimResNet_width   import SearchWidthSimResNet | ||||
| from .SearchImagenetResNet    import SearchShapeImagenetResNet | ||||
| from .generic_size_tiny_cell_model import GenericNAS301Model | ||||
|   | ||||
							
								
								
									
										139
									
								
								lib/models/shape_searchs/generic_size_tiny_cell_model.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										139
									
								
								lib/models/shape_searchs/generic_size_tiny_cell_model.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,139 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| from typing import List, Text, Any | ||||
| import random, torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| from models.cell_operations import ResNetBasicblock | ||||
| from models.cell_infers.cells import InferCell | ||||
| from models.shape_searchs.SoftSelect import select2withP, ChannelWiseInter | ||||
|  | ||||
|  | ||||
| class GenericNAS301Model(nn.Module): | ||||
|  | ||||
|   def __init__(self, candidate_Cs: List[int], max_num_Cs: int, genotype: Any, num_classes: int, affine: bool, track_running_stats: bool): | ||||
|     super(GenericNAS301Model, self).__init__() | ||||
|     self._max_num_Cs = max_num_Cs | ||||
|     self._candidate_Cs = candidate_Cs | ||||
|     if max_num_Cs % 3 != 2: | ||||
|       raise ValueError('invalid number of layers : {:}'.format(max_num_Cs)) | ||||
|     self._num_stage = N = max_num_Cs // 3 | ||||
|     self._max_C = max(candidate_Cs) | ||||
|  | ||||
|     stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine), | ||||
|                     nn.BatchNorm2d(self._max_C, affine=affine, track_running_stats=track_running_stats)) | ||||
|  | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     c_prev = self._max_C | ||||
|     self._cells = nn.ModuleList() | ||||
|     self._cells.append(stem) | ||||
|     for index, reduction in enumerate(layer_reductions): | ||||
|       if reduction : cell = ResNetBasicblock(c_prev, self._max_C, 2, True) | ||||
|       else         : cell = InferCell(genotype, c_prev, self._max_C, 1, affine, track_running_stats) | ||||
|       self._cells.append(cell) | ||||
|       c_prev = cell.out_dim | ||||
|     self._num_layer = len(self._cells) | ||||
|  | ||||
|     self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev, affine=affine, track_running_stats=track_running_stats), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(c_prev, num_classes) | ||||
|     # algorithm related | ||||
|     self.register_buffer('_tau', torch.zeros(1)) | ||||
|     self._algo        = None | ||||
|  | ||||
|   def set_algo(self, algo: Text): | ||||
|     # used for searching | ||||
|     assert self._algo is None, 'This functioin can only be called once.' | ||||
|     assert algo in ['fbv2', 'enas', 'tas'], 'invalid algo : {:}'.format(algo) | ||||
|     self._algo = algo | ||||
|     self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs))) | ||||
|     if algo == 'fbv2' or algo == 'enas': | ||||
|       self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))) | ||||
|       for i in range(len(self._candidate_Cs)): | ||||
|         self._masks.data[i, :self._candidate_Cs[i]] = 1 | ||||
|    | ||||
|   @property | ||||
|   def tau(self): | ||||
|     return self._tau | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self._tau.data[:] = tau | ||||
|  | ||||
|   @property | ||||
|   def weights(self): | ||||
|     xlist = list(self._cells.parameters()) | ||||
|     xlist+= list(self.lastact.parameters()) | ||||
|     xlist+= list(self.global_pooling.parameters()) | ||||
|     xlist+= list(self.classifier.parameters()) | ||||
|     return xlist | ||||
|  | ||||
|   @property | ||||
|   def alphas(self): | ||||
|     return [self._arch_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       return 'arch-parameters :\n{:}'.format(nn.functional.softmax(self._arch_parameters, dim=-1).cpu()) | ||||
|  | ||||
|   @property | ||||
|   def random(self): | ||||
|     cs = [] | ||||
|     for i in range(self._max_num_Cs): | ||||
|       index = random.randint(0, len(self._candidate_Cs)-1) | ||||
|       cs.append(str(self._candidate_Cs[index])) | ||||
|     return ':'.join(cs) | ||||
|    | ||||
|   @property | ||||
|   def genotype(self): | ||||
|     cs = [] | ||||
|     for i in range(self._max_num_Cs): | ||||
|       with torch.no_grad(): | ||||
|         index = self._arch_parameters[i].argmax().item() | ||||
|         cs.append(str(self._candidate_Cs[index])) | ||||
|     return ':'.join(cs) | ||||
|  | ||||
|   def get_message(self) -> Text: | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self._cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     feature = inputs | ||||
|     for i, cell in enumerate(self._cells): | ||||
|       feature = cell(feature) | ||||
|       if self._algo == 'fbv2': | ||||
|         idx = max(0, i-1) | ||||
|         weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1) | ||||
|         mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1) | ||||
|         feature = feature * mask | ||||
|       elif self._algo == 'tas': | ||||
|         idx = max(0, i-1) | ||||
|         selected_cs, selected_probs = select2withP(self._arch_parameters[idx:idx+1], self.tau, num=2) | ||||
|         with torch.no_grad(): | ||||
|           i1, i2 = selected_cs.cpu().view(-1).tolist() | ||||
|         c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2] | ||||
|         out_channel = max(c1, c2) | ||||
|         out1 = ChannelWiseInter(feature[:, :c1], out_channel) | ||||
|         out2 = ChannelWiseInter(feature[:, :c2], out_channel) | ||||
|         out  = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1] | ||||
|         if feature.shape[1] == out.shape[1]: | ||||
|           feature = out | ||||
|         else: | ||||
|           miss = torch.zeros(feature.shape[0], feature.shape[1]-out.shape[1], feature.shape[2], feature.shape[3], device=feature.device) | ||||
|           feature = torch.cat((out, miss), dim=1) | ||||
|       else: | ||||
|         raise ValueError('invalid algorithm : {:}'.format(self._algo)) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling(out) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
		Reference in New Issue
	
	Block a user