Update TAS abd FBV2 for NAS-Bench
This commit is contained in:
parent
b9fbe5577c
commit
4a2292a863
@ -338,8 +338,7 @@ def main(xargs):
|
|||||||
else:
|
else:
|
||||||
extra_info = {'class_num': class_num, 'xshape': xshape, 'epochs': xargs.overwite_epochs}
|
extra_info = {'class_num': class_num, 'xshape': xshape, 'epochs': xargs.overwite_epochs}
|
||||||
config = load_config(xargs.config_path, extra_info, logger)
|
config = load_config(xargs.config_path, extra_info, logger)
|
||||||
search_loader, train_loader, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', \
|
search_loader, train_loader, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', (config.batch_size, config.test_batch_size), xargs.workers)
|
||||||
(config.batch_size, config.test_batch_size), xargs.workers)
|
|
||||||
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
|
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
|
||||||
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||||
|
|
||||||
|
334
exps/algos-v2/search-size.py
Normal file
334
exps/algos-v2/search-size.py
Normal file
@ -0,0 +1,334 @@
|
|||||||
|
##################################################
|
||||||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
||||||
|
######################################################################################
|
||||||
|
# python ./exps/algos-v2/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
|
||||||
|
# python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
|
||||||
|
# python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed 777
|
||||||
|
####
|
||||||
|
# python ./exps/algos-v2/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
|
||||||
|
# python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
|
||||||
|
# python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --rand_seed 777
|
||||||
|
######################################################################################
|
||||||
|
import os, sys, time, random, argparse
|
||||||
|
import numpy as np
|
||||||
|
from copy import deepcopy
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from pathlib import Path
|
||||||
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||||
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||||
|
from config_utils import load_config, dict2config, configure2str
|
||||||
|
from datasets import get_datasets, get_nas_search_loaders
|
||||||
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||||
|
from utils import count_parameters_in_MB, obtain_accuracy
|
||||||
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||||
|
from models import get_cell_based_tiny_net, get_search_spaces
|
||||||
|
from nas_201_api import NASBench301API as API
|
||||||
|
|
||||||
|
|
||||||
|
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
|
||||||
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||||
|
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||||
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||||
|
end = time.time()
|
||||||
|
network.train()
|
||||||
|
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
|
||||||
|
scheduler.update(None, 1.0 * step / len(xloader))
|
||||||
|
base_inputs = base_inputs.cuda(non_blocking=True)
|
||||||
|
arch_inputs = arch_inputs.cuda(non_blocking=True)
|
||||||
|
base_targets = base_targets.cuda(non_blocking=True)
|
||||||
|
arch_targets = arch_targets.cuda(non_blocking=True)
|
||||||
|
# measure data loading time
|
||||||
|
data_time.update(time.time() - end)
|
||||||
|
|
||||||
|
# Update the weights
|
||||||
|
network.zero_grad()
|
||||||
|
_, logits = network(base_inputs)
|
||||||
|
base_loss = criterion(logits, base_targets)
|
||||||
|
base_loss.backward()
|
||||||
|
w_optimizer.step()
|
||||||
|
# record
|
||||||
|
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
|
||||||
|
base_losses.update(base_loss.item(), base_inputs.size(0))
|
||||||
|
base_top1.update (base_prec1.item(), base_inputs.size(0))
|
||||||
|
base_top5.update (base_prec5.item(), base_inputs.size(0))
|
||||||
|
|
||||||
|
# update the architecture-weight
|
||||||
|
network.zero_grad()
|
||||||
|
_, logits = network(arch_inputs)
|
||||||
|
arch_loss = criterion(logits, arch_targets)
|
||||||
|
arch_loss.backward()
|
||||||
|
a_optimizer.step()
|
||||||
|
# record
|
||||||
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||||
|
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
||||||
|
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
|
||||||
|
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
|
||||||
|
|
||||||
|
# measure elapsed time
|
||||||
|
batch_time.update(time.time() - end)
|
||||||
|
end = time.time()
|
||||||
|
|
||||||
|
if step % print_freq == 0 or step + 1 == len(xloader):
|
||||||
|
Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
|
||||||
|
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
||||||
|
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
|
||||||
|
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
|
||||||
|
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
|
||||||
|
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
|
||||||
|
|
||||||
|
|
||||||
|
def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger):
|
||||||
|
# config. (containing some necessary arg)
|
||||||
|
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
|
||||||
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||||
|
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time()
|
||||||
|
|
||||||
|
controller_num_aggregate = 20
|
||||||
|
controller_train_steps = 50
|
||||||
|
controller_bl_dec = 0.99
|
||||||
|
controller_entropy_weight = 0.0001
|
||||||
|
|
||||||
|
network.eval()
|
||||||
|
network.controller.train()
|
||||||
|
network.controller.zero_grad()
|
||||||
|
loader_iter = iter(xloader)
|
||||||
|
for step in range(controller_train_steps * controller_num_aggregate):
|
||||||
|
try:
|
||||||
|
inputs, targets = next(loader_iter)
|
||||||
|
except:
|
||||||
|
loader_iter = iter(xloader)
|
||||||
|
inputs, targets = next(loader_iter)
|
||||||
|
inputs = inputs.cuda(non_blocking=True)
|
||||||
|
targets = targets.cuda(non_blocking=True)
|
||||||
|
# measure data loading time
|
||||||
|
data_time.update(time.time() - xend)
|
||||||
|
|
||||||
|
log_prob, entropy, sampled_arch = network.controller()
|
||||||
|
with torch.no_grad():
|
||||||
|
network.set_cal_mode('dynamic', sampled_arch)
|
||||||
|
_, logits = network(inputs)
|
||||||
|
val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
||||||
|
val_top1 = val_top1.view(-1) / 100
|
||||||
|
reward = val_top1 + controller_entropy_weight * entropy
|
||||||
|
if prev_baseline is None:
|
||||||
|
baseline = val_top1
|
||||||
|
else:
|
||||||
|
baseline = prev_baseline - (1 - controller_bl_dec) * (prev_baseline - reward)
|
||||||
|
|
||||||
|
loss = -1 * log_prob * (reward - baseline)
|
||||||
|
|
||||||
|
# account
|
||||||
|
RewardMeter.update(reward.item())
|
||||||
|
BaselineMeter.update(baseline.item())
|
||||||
|
ValAccMeter.update(val_top1.item()*100)
|
||||||
|
LossMeter.update(loss.item())
|
||||||
|
EntropyMeter.update(entropy.item())
|
||||||
|
|
||||||
|
# Average gradient over controller_num_aggregate samples
|
||||||
|
loss = loss / controller_num_aggregate
|
||||||
|
loss.backward(retain_graph=True)
|
||||||
|
|
||||||
|
# measure elapsed time
|
||||||
|
batch_time.update(time.time() - xend)
|
||||||
|
xend = time.time()
|
||||||
|
if (step+1) % controller_num_aggregate == 0:
|
||||||
|
grad_norm = torch.nn.utils.clip_grad_norm_(network.controller.parameters(), 5.0)
|
||||||
|
GradnormMeter.update(grad_norm)
|
||||||
|
optimizer.step()
|
||||||
|
network.controller.zero_grad()
|
||||||
|
|
||||||
|
if step % print_freq == 0:
|
||||||
|
Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, controller_train_steps * controller_num_aggregate)
|
||||||
|
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
||||||
|
Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter)
|
||||||
|
Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg)
|
||||||
|
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr)
|
||||||
|
|
||||||
|
return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg
|
||||||
|
|
||||||
|
|
||||||
|
def valid_func(xloader, network, criterion, logger):
|
||||||
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||||
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||||
|
end = time.time()
|
||||||
|
with torch.no_grad():
|
||||||
|
network.eval()
|
||||||
|
for step, (arch_inputs, arch_targets) in enumerate(xloader):
|
||||||
|
arch_targets = arch_targets.cuda(non_blocking=True)
|
||||||
|
# measure data loading time
|
||||||
|
data_time.update(time.time() - end)
|
||||||
|
# prediction
|
||||||
|
_, logits = network(arch_inputs.cuda(non_blocking=True))
|
||||||
|
arch_loss = criterion(logits, arch_targets)
|
||||||
|
# record
|
||||||
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||||
|
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
||||||
|
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
|
||||||
|
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
|
||||||
|
# measure elapsed time
|
||||||
|
batch_time.update(time.time() - end)
|
||||||
|
end = time.time()
|
||||||
|
return arch_losses.avg, arch_top1.avg, arch_top5.avg
|
||||||
|
|
||||||
|
|
||||||
|
def main(xargs):
|
||||||
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||||
|
torch.backends.cudnn.enabled = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.set_num_threads( xargs.workers )
|
||||||
|
prepare_seed(xargs.rand_seed)
|
||||||
|
logger = prepare_logger(args)
|
||||||
|
|
||||||
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||||
|
if xargs.overwite_epochs is None:
|
||||||
|
extra_info = {'class_num': class_num, 'xshape': xshape}
|
||||||
|
else:
|
||||||
|
extra_info = {'class_num': class_num, 'xshape': xshape, 'epochs': xargs.overwite_epochs}
|
||||||
|
config = load_config(xargs.config_path, extra_info, logger)
|
||||||
|
search_loader, train_loader, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', (config.batch_size, config.test_batch_size), xargs.workers)
|
||||||
|
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
|
||||||
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||||
|
|
||||||
|
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
||||||
|
|
||||||
|
model_config = dict2config(
|
||||||
|
dict(name='generic', super_type='search-shape', candidate_Cs=search_space['candidates'], max_num_Cs=search_space['numbers'], num_classes=class_num,
|
||||||
|
genotype=args.genotype, affine=bool(xargs.affine), track_running_stats=bool(xargs.track_running_stats)), None)
|
||||||
|
logger.log('search space : {:}'.format(search_space))
|
||||||
|
logger.log('model config : {:}'.format(model_config))
|
||||||
|
search_model = get_cell_based_tiny_net(model_config)
|
||||||
|
search_model.set_algo(xargs.algo)
|
||||||
|
logger.log('{:}'.format(search_model))
|
||||||
|
|
||||||
|
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.weights, config)
|
||||||
|
a_optimizer = torch.optim.Adam(search_model.alphas, lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, eps=xargs.arch_eps)
|
||||||
|
logger.log('w-optimizer : {:}'.format(w_optimizer))
|
||||||
|
logger.log('a-optimizer : {:}'.format(a_optimizer))
|
||||||
|
logger.log('w-scheduler : {:}'.format(w_scheduler))
|
||||||
|
logger.log('criterion : {:}'.format(criterion))
|
||||||
|
params = count_parameters_in_MB(search_model)
|
||||||
|
logger.log('The parameters of the search model = {:.2f} MB'.format(params))
|
||||||
|
logger.log('search-space : {:}'.format(search_space))
|
||||||
|
try:
|
||||||
|
api = API(verbose=False)
|
||||||
|
except:
|
||||||
|
api = None
|
||||||
|
logger.log('{:} create API = {:} done'.format(time_string(), api))
|
||||||
|
|
||||||
|
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
|
||||||
|
network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU
|
||||||
|
|
||||||
|
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
|
||||||
|
|
||||||
|
if last_info.exists(): # automatically resume from previous checkpoint
|
||||||
|
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
|
||||||
|
last_info = torch.load(last_info)
|
||||||
|
start_epoch = last_info['epoch']
|
||||||
|
checkpoint = torch.load(last_info['last_checkpoint'])
|
||||||
|
genotypes = checkpoint['genotypes']
|
||||||
|
valid_accuracies = checkpoint['valid_accuracies']
|
||||||
|
search_model.load_state_dict( checkpoint['search_model'] )
|
||||||
|
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
|
||||||
|
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
|
||||||
|
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
|
||||||
|
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
|
||||||
|
else:
|
||||||
|
logger.log("=> do not find the last-info file : {:}".format(last_info))
|
||||||
|
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {-1: network.random}
|
||||||
|
|
||||||
|
# start training
|
||||||
|
start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
|
||||||
|
for epoch in range(start_epoch, total_epoch):
|
||||||
|
w_scheduler.update(epoch, 0.0)
|
||||||
|
need_time = 'Time Left: {:}'.format(convert_secs2time(epoch_time.val * (total_epoch-epoch), True))
|
||||||
|
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
|
||||||
|
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr())))
|
||||||
|
|
||||||
|
if xargs.algo == 'fbv2' or xargs.algo == 'tas':
|
||||||
|
network.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) )
|
||||||
|
logger.log('[RESET tau as : {:}]'.format(network.tau))
|
||||||
|
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \
|
||||||
|
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
|
||||||
|
search_time.update(time.time() - start_time)
|
||||||
|
logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
|
||||||
|
logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5))
|
||||||
|
|
||||||
|
genotype = network.genotype
|
||||||
|
logger.log('[{:}] - [get_best_arch] : {:}'.format(epoch_str, genotype))
|
||||||
|
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion, logger)
|
||||||
|
logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype))
|
||||||
|
valid_accuracies[epoch] = valid_a_top1
|
||||||
|
|
||||||
|
genotypes[epoch] = genotype
|
||||||
|
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
|
||||||
|
# save checkpoint
|
||||||
|
save_path = save_checkpoint({'epoch' : epoch + 1,
|
||||||
|
'args' : deepcopy(xargs),
|
||||||
|
'search_model': search_model.state_dict(),
|
||||||
|
'w_optimizer' : w_optimizer.state_dict(),
|
||||||
|
'a_optimizer' : a_optimizer.state_dict(),
|
||||||
|
'w_scheduler' : w_scheduler.state_dict(),
|
||||||
|
'genotypes' : genotypes,
|
||||||
|
'valid_accuracies' : valid_accuracies},
|
||||||
|
model_base_path, logger)
|
||||||
|
last_info = save_checkpoint({
|
||||||
|
'epoch': epoch + 1,
|
||||||
|
'args' : deepcopy(args),
|
||||||
|
'last_checkpoint': save_path,
|
||||||
|
}, logger.path('info'), logger)
|
||||||
|
with torch.no_grad():
|
||||||
|
logger.log('{:}'.format(search_model.show_alphas()))
|
||||||
|
if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch], '90')))
|
||||||
|
# measure elapsed time
|
||||||
|
epoch_time.update(time.time() - start_time)
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# the final post procedure : count the time
|
||||||
|
start_time = time.time()
|
||||||
|
genotype = network.genotype
|
||||||
|
search_time.update(time.time() - start_time)
|
||||||
|
|
||||||
|
valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(valid_loader, network, criterion, logger)
|
||||||
|
logger.log('Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'.format(genotype, valid_a_top1))
|
||||||
|
|
||||||
|
logger.log('\n' + '-'*100)
|
||||||
|
# check the performance from the architecture dataset
|
||||||
|
logger.log('[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(xargs.algo, total_epoch, search_time.sum, genotype))
|
||||||
|
if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '90') ))
|
||||||
|
logger.close()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.")
|
||||||
|
parser.add_argument('--data_path' , type=str, help='Path to dataset')
|
||||||
|
parser.add_argument('--dataset' , type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||||
|
parser.add_argument('--search_space', type=str, default='sss', choices=['sss'], help='The search space name.')
|
||||||
|
parser.add_argument('--algo' , type=str, choices=['tas', 'fbv2', 'enas'], help='The search space name.')
|
||||||
|
parser.add_argument('--genotype' , type=str, default='|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|', help='The genotype.')
|
||||||
|
# FOR GDAS
|
||||||
|
parser.add_argument('--tau_min', type=float, default=0.1, help='The minimum tau for Gumbel Softmax.')
|
||||||
|
parser.add_argument('--tau_max', type=float, default=10, help='The maximum tau for Gumbel Softmax.')
|
||||||
|
#
|
||||||
|
parser.add_argument('--track_running_stats',type=int, default=0, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.')
|
||||||
|
parser.add_argument('--affine' , type=int, default=0, choices=[0,1],help='Whether use affine=True or False in the BN layer.')
|
||||||
|
parser.add_argument('--config_path' , type=str, default='./configs/nas-benchmark/algos/weight-sharing.config', help='The path of configuration.')
|
||||||
|
parser.add_argument('--overwite_epochs', type=int, help='The number of epochs to overwrite that value in config files.')
|
||||||
|
# architecture leraning rate
|
||||||
|
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
|
||||||
|
parser.add_argument('--arch_weight_decay' , type=float, default=1e-3, help='weight decay for arch encoding')
|
||||||
|
parser.add_argument('--arch_eps' , type=float, default=1e-8, help='weight decay for arch encoding')
|
||||||
|
# log
|
||||||
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||||
|
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||||||
|
parser.add_argument('--print_freq', type=int, default=200, help='print frequency (default: 200)')
|
||||||
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||||
|
args = parser.parse_args()
|
||||||
|
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||||
|
dirname = '{:}-affine{:}_BN{:}'.format(args.algo, args.affine, args.track_running_stats)
|
||||||
|
if args.overwite_epochs is not None:
|
||||||
|
dirname = dirname + '-E{:}'.format(args.overwite_epochs)
|
||||||
|
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, dirname)
|
||||||
|
|
||||||
|
main(args)
|
@ -33,6 +33,7 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
|
|||||||
alg2name['GDAS'] = 'gdas-affine0_BN0-None'
|
alg2name['GDAS'] = 'gdas-affine0_BN0-None'
|
||||||
alg2name['RSPS'] = 'random-affine0_BN0-None'
|
alg2name['RSPS'] = 'random-affine0_BN0-None'
|
||||||
alg2name['DARTS (1st)'] = 'darts-v1-affine0_BN0-None'
|
alg2name['DARTS (1st)'] = 'darts-v1-affine0_BN0-None'
|
||||||
|
alg2name['ENAS'] = 'enas-affine0_BN0-None'
|
||||||
"""
|
"""
|
||||||
alg2name['DARTS (2nd)'] = 'darts-v2-affine1_BN0-None'
|
alg2name['DARTS (2nd)'] = 'darts-v2-affine1_BN0-None'
|
||||||
alg2name['SETN'] = 'setn-affine1_BN0-None'
|
alg2name['SETN'] = 'setn-affine1_BN0-None'
|
||||||
|
@ -12,8 +12,8 @@ __all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_ci
|
|||||||
|
|
||||||
# useful modules
|
# useful modules
|
||||||
from config_utils import dict2config
|
from config_utils import dict2config
|
||||||
from .SharedUtils import change_key
|
from models.SharedUtils import change_key
|
||||||
from .cell_searchs import CellStructure, CellArchitectures
|
from models.cell_searchs import CellStructure, CellArchitectures
|
||||||
|
|
||||||
|
|
||||||
# Cell-based NAS Models
|
# Cell-based NAS Models
|
||||||
@ -27,6 +27,10 @@ def get_cell_based_tiny_net(config):
|
|||||||
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats)
|
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats)
|
||||||
except:
|
except:
|
||||||
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||||||
|
elif super_type == 'search-shape':
|
||||||
|
from .shape_searchs import GenericNAS301Model
|
||||||
|
genotype = CellStructure.str2structure(config.genotype)
|
||||||
|
return GenericNAS301Model(config.candidate_Cs, config.max_num_Cs, genotype, config.num_classes, config.affine, config.track_running_stats)
|
||||||
elif super_type == 'nasnet-super':
|
elif super_type == 'nasnet-super':
|
||||||
from .cell_searchs import nasnet_super_nets as nas_super_nets
|
from .cell_searchs import nasnet_super_nets as nas_super_nets
|
||||||
return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \
|
return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \
|
||||||
|
@ -5,13 +5,14 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from ..cell_operations import OPS
|
|
||||||
|
from models.cell_operations import OPS
|
||||||
|
|
||||||
|
|
||||||
# Cell for NAS-Bench-201
|
# Cell for NAS-Bench-201
|
||||||
class InferCell(nn.Module):
|
class InferCell(nn.Module):
|
||||||
|
|
||||||
def __init__(self, genotype, C_in, C_out, stride):
|
def __init__(self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True):
|
||||||
super(InferCell, self).__init__()
|
super(InferCell, self).__init__()
|
||||||
|
|
||||||
self.layers = nn.ModuleList()
|
self.layers = nn.ModuleList()
|
||||||
@ -24,9 +25,9 @@ class InferCell(nn.Module):
|
|||||||
cur_innod = []
|
cur_innod = []
|
||||||
for (op_name, op_in) in node_info:
|
for (op_name, op_in) in node_info:
|
||||||
if op_in == 0:
|
if op_in == 0:
|
||||||
layer = OPS[op_name](C_in , C_out, stride, True, True)
|
layer = OPS[op_name](C_in , C_out, stride, affine, track_running_stats)
|
||||||
else:
|
else:
|
||||||
layer = OPS[op_name](C_out, C_out, 1, True, True)
|
layer = OPS[op_name](C_out, C_out, 1, affine, track_running_stats)
|
||||||
cur_index.append( len(self.layers) )
|
cur_index.append( len(self.layers) )
|
||||||
cur_innod.append( op_in )
|
cur_innod.append( op_in )
|
||||||
self.layers.append( layer )
|
self.layers.append( layer )
|
||||||
|
@ -74,17 +74,17 @@ class DualSepConv(nn.Module):
|
|||||||
|
|
||||||
class ResNetBasicblock(nn.Module):
|
class ResNetBasicblock(nn.Module):
|
||||||
|
|
||||||
def __init__(self, inplanes, planes, stride, affine=True):
|
def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True):
|
||||||
super(ResNetBasicblock, self).__init__()
|
super(ResNetBasicblock, self).__init__()
|
||||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||||
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine)
|
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine, track_running_stats)
|
||||||
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine)
|
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine, track_running_stats)
|
||||||
if stride == 2:
|
if stride == 2:
|
||||||
self.downsample = nn.Sequential(
|
self.downsample = nn.Sequential(
|
||||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||||
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
|
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
|
||||||
elif inplanes != planes:
|
elif inplanes != planes:
|
||||||
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine)
|
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine, track_running_stats)
|
||||||
else:
|
else:
|
||||||
self.downsample = None
|
self.downsample = None
|
||||||
self.in_dim = inplanes
|
self.in_dim = inplanes
|
||||||
|
@ -6,3 +6,4 @@ from .SearchCifarResNet_depth import SearchDepthCifarResNet
|
|||||||
from .SearchCifarResNet import SearchShapeCifarResNet
|
from .SearchCifarResNet import SearchShapeCifarResNet
|
||||||
from .SearchSimResNet_width import SearchWidthSimResNet
|
from .SearchSimResNet_width import SearchWidthSimResNet
|
||||||
from .SearchImagenetResNet import SearchShapeImagenetResNet
|
from .SearchImagenetResNet import SearchShapeImagenetResNet
|
||||||
|
from .generic_size_tiny_cell_model import GenericNAS301Model
|
||||||
|
139
lib/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
139
lib/models/shape_searchs/generic_size_tiny_cell_model.py
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
#####################################################
|
||||||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||||
|
#####################################################
|
||||||
|
from typing import List, Text, Any
|
||||||
|
import random, torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from models.cell_operations import ResNetBasicblock
|
||||||
|
from models.cell_infers.cells import InferCell
|
||||||
|
from models.shape_searchs.SoftSelect import select2withP, ChannelWiseInter
|
||||||
|
|
||||||
|
|
||||||
|
class GenericNAS301Model(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, candidate_Cs: List[int], max_num_Cs: int, genotype: Any, num_classes: int, affine: bool, track_running_stats: bool):
|
||||||
|
super(GenericNAS301Model, self).__init__()
|
||||||
|
self._max_num_Cs = max_num_Cs
|
||||||
|
self._candidate_Cs = candidate_Cs
|
||||||
|
if max_num_Cs % 3 != 2:
|
||||||
|
raise ValueError('invalid number of layers : {:}'.format(max_num_Cs))
|
||||||
|
self._num_stage = N = max_num_Cs // 3
|
||||||
|
self._max_C = max(candidate_Cs)
|
||||||
|
|
||||||
|
stem = nn.Sequential(
|
||||||
|
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
|
||||||
|
nn.BatchNorm2d(self._max_C, affine=affine, track_running_stats=track_running_stats))
|
||||||
|
|
||||||
|
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||||
|
|
||||||
|
c_prev = self._max_C
|
||||||
|
self._cells = nn.ModuleList()
|
||||||
|
self._cells.append(stem)
|
||||||
|
for index, reduction in enumerate(layer_reductions):
|
||||||
|
if reduction : cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
|
||||||
|
else : cell = InferCell(genotype, c_prev, self._max_C, 1, affine, track_running_stats)
|
||||||
|
self._cells.append(cell)
|
||||||
|
c_prev = cell.out_dim
|
||||||
|
self._num_layer = len(self._cells)
|
||||||
|
|
||||||
|
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev, affine=affine, track_running_stats=track_running_stats), nn.ReLU(inplace=True))
|
||||||
|
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||||
|
self.classifier = nn.Linear(c_prev, num_classes)
|
||||||
|
# algorithm related
|
||||||
|
self.register_buffer('_tau', torch.zeros(1))
|
||||||
|
self._algo = None
|
||||||
|
|
||||||
|
def set_algo(self, algo: Text):
|
||||||
|
# used for searching
|
||||||
|
assert self._algo is None, 'This functioin can only be called once.'
|
||||||
|
assert algo in ['fbv2', 'enas', 'tas'], 'invalid algo : {:}'.format(algo)
|
||||||
|
self._algo = algo
|
||||||
|
self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs)))
|
||||||
|
if algo == 'fbv2' or algo == 'enas':
|
||||||
|
self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)))
|
||||||
|
for i in range(len(self._candidate_Cs)):
|
||||||
|
self._masks.data[i, :self._candidate_Cs[i]] = 1
|
||||||
|
|
||||||
|
@property
|
||||||
|
def tau(self):
|
||||||
|
return self._tau
|
||||||
|
|
||||||
|
def set_tau(self, tau):
|
||||||
|
self._tau.data[:] = tau
|
||||||
|
|
||||||
|
@property
|
||||||
|
def weights(self):
|
||||||
|
xlist = list(self._cells.parameters())
|
||||||
|
xlist+= list(self.lastact.parameters())
|
||||||
|
xlist+= list(self.global_pooling.parameters())
|
||||||
|
xlist+= list(self.classifier.parameters())
|
||||||
|
return xlist
|
||||||
|
|
||||||
|
@property
|
||||||
|
def alphas(self):
|
||||||
|
return [self._arch_parameters]
|
||||||
|
|
||||||
|
def show_alphas(self):
|
||||||
|
with torch.no_grad():
|
||||||
|
return 'arch-parameters :\n{:}'.format(nn.functional.softmax(self._arch_parameters, dim=-1).cpu())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def random(self):
|
||||||
|
cs = []
|
||||||
|
for i in range(self._max_num_Cs):
|
||||||
|
index = random.randint(0, len(self._candidate_Cs)-1)
|
||||||
|
cs.append(str(self._candidate_Cs[index]))
|
||||||
|
return ':'.join(cs)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def genotype(self):
|
||||||
|
cs = []
|
||||||
|
for i in range(self._max_num_Cs):
|
||||||
|
with torch.no_grad():
|
||||||
|
index = self._arch_parameters[i].argmax().item()
|
||||||
|
cs.append(str(self._candidate_Cs[index]))
|
||||||
|
return ':'.join(cs)
|
||||||
|
|
||||||
|
def get_message(self) -> Text:
|
||||||
|
string = self.extra_repr()
|
||||||
|
for i, cell in enumerate(self._cells):
|
||||||
|
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr())
|
||||||
|
return string
|
||||||
|
|
||||||
|
def extra_repr(self):
|
||||||
|
return ('{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
feature = inputs
|
||||||
|
for i, cell in enumerate(self._cells):
|
||||||
|
feature = cell(feature)
|
||||||
|
if self._algo == 'fbv2':
|
||||||
|
idx = max(0, i-1)
|
||||||
|
weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1)
|
||||||
|
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
|
||||||
|
feature = feature * mask
|
||||||
|
elif self._algo == 'tas':
|
||||||
|
idx = max(0, i-1)
|
||||||
|
selected_cs, selected_probs = select2withP(self._arch_parameters[idx:idx+1], self.tau, num=2)
|
||||||
|
with torch.no_grad():
|
||||||
|
i1, i2 = selected_cs.cpu().view(-1).tolist()
|
||||||
|
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
|
||||||
|
out_channel = max(c1, c2)
|
||||||
|
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
|
||||||
|
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
|
||||||
|
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
|
||||||
|
if feature.shape[1] == out.shape[1]:
|
||||||
|
feature = out
|
||||||
|
else:
|
||||||
|
miss = torch.zeros(feature.shape[0], feature.shape[1]-out.shape[1], feature.shape[2], feature.shape[3], device=feature.device)
|
||||||
|
feature = torch.cat((out, miss), dim=1)
|
||||||
|
else:
|
||||||
|
raise ValueError('invalid algorithm : {:}'.format(self._algo))
|
||||||
|
|
||||||
|
out = self.lastact(feature)
|
||||||
|
out = self.global_pooling(out)
|
||||||
|
out = out.view(out.size(0), -1)
|
||||||
|
logits = self.classifier(out)
|
||||||
|
|
||||||
|
return out, logits
|
Loading…
Reference in New Issue
Block a user