To re-org Q-results
This commit is contained in:
		| @@ -24,12 +24,12 @@ class PositionalEncoder(nn.Module): | ||||
|         else: | ||||
|           pe[pos, i] = math.cos(value) | ||||
|     pe = pe.unsqueeze(0) | ||||
|     self.dropout = nn.Dropout(p=dropout) | ||||
|     self.register_buffer('pe', pe) | ||||
|   | ||||
|    | ||||
|   def forward(self, x): | ||||
|     batch, seq, fdim = x.shape[:3] | ||||
|     embeddings = self.pe[:, :seq, :fdim] | ||||
|     import pdb; pdb.set_trace() | ||||
|     outs = self.dropout(x + embeddings) | ||||
|     return x + embeddings | ||||
|     return outs | ||||
|   | ||||
| @@ -5,6 +5,7 @@ from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import os | ||||
| import math | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| import copy | ||||
| @@ -43,7 +44,7 @@ class QuantTransformer(Model): | ||||
|     d_feat=6, | ||||
|     hidden_size=48, | ||||
|     depth=5, | ||||
|     dropout=0.0, | ||||
|     pos_dropout=0.1, | ||||
|     n_epochs=200, | ||||
|     lr=0.001, | ||||
|     metric="", | ||||
| @@ -63,7 +64,7 @@ class QuantTransformer(Model): | ||||
|     self.d_feat = d_feat | ||||
|     self.hidden_size = hidden_size | ||||
|     self.depth = depth | ||||
|     self.dropout = dropout | ||||
|     self.pos_dropout = pos_dropout | ||||
|     self.n_epochs = n_epochs | ||||
|     self.lr = lr | ||||
|     self.metric = metric | ||||
| @@ -94,7 +95,7 @@ class QuantTransformer(Model): | ||||
|         d_feat, | ||||
|         hidden_size, | ||||
|         depth, | ||||
|         dropout, | ||||
|         pos_dropout, | ||||
|         n_epochs, | ||||
|         lr, | ||||
|         metric, | ||||
| @@ -114,9 +115,10 @@ class QuantTransformer(Model): | ||||
|  | ||||
|     self.model = TransformerModel(d_feat=self.d_feat, | ||||
|                                   embed_dim=self.hidden_size, | ||||
|                                   depth=self.depth) | ||||
|                                   depth=self.depth, | ||||
|                                   pos_dropout=pos_dropout) | ||||
|     self.logger.info('model: {:}'.format(self.model)) | ||||
|     self.logger.info('model size: {:.3f} MB'.format(count_parameters_in_MB(self.model))) | ||||
|     self.logger.info('model size: {:.3f} MB'.format(count_parameters(self.model))) | ||||
|    | ||||
|      | ||||
|     if optimizer.lower() == "adam": | ||||
| @@ -129,17 +131,10 @@ class QuantTransformer(Model): | ||||
|     self.fitted = False | ||||
|     self.model.to(self.device) | ||||
|  | ||||
|   def mse(self, pred, label): | ||||
|     loss = (pred - label) ** 2 | ||||
|     return torch.mean(loss) | ||||
|  | ||||
|   def loss_fn(self, pred, label): | ||||
|     mask = ~torch.isnan(label) | ||||
|  | ||||
|     if self.loss == "mse": | ||||
|       import pdb; pdb.set_trace() | ||||
|       print('--') | ||||
|       return self.mse(pred[mask], label[mask]) | ||||
|       return F.mse_loss(pred[mask], label[mask]) | ||||
|     else: | ||||
|       raise ValueError("unknown loss `{:}`".format(self.loss)) | ||||
|  | ||||
| @@ -309,7 +304,7 @@ class Attention(nn.Module): | ||||
|     self.num_heads = num_heads | ||||
|     head_dim = dim // num_heads | ||||
|     # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | ||||
|     self.scale = qk_scale or head_dim ** -0.5 | ||||
|     self.scale = qk_scale or math.sqrt(head_dim) | ||||
|  | ||||
|     self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | ||||
|     self.attn_drop = nn.Dropout(attn_drop) | ||||
| @@ -333,17 +328,18 @@ class Attention(nn.Module): | ||||
|  | ||||
| class Block(nn.Module): | ||||
|  | ||||
|   def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | ||||
|          drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | ||||
|   def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, | ||||
|                attn_drop=0., mlp_drop=0., drop_path=0., | ||||
|                act_layer=nn.GELU, norm_layer=nn.LayerNorm): | ||||
|     super(Block, self).__init__() | ||||
|     self.norm1 = norm_layer(dim) | ||||
|     self.attn = Attention( | ||||
|       dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | ||||
|       dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop) | ||||
|     # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | ||||
|     self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity() | ||||
|     self.norm2 = norm_layer(dim) | ||||
|     mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|     self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | ||||
|     self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = x + self.drop_path(self.attn(self.norm1(x))) | ||||
| @@ -356,12 +352,13 @@ class SimpleEmbed(nn.Module): | ||||
|   def __init__(self, d_feat, embed_dim): | ||||
|     super(SimpleEmbed, self).__init__() | ||||
|     self.d_feat = d_feat | ||||
|     self.embed_dim = embed_dim | ||||
|     self.proj = nn.Linear(d_feat, embed_dim) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = x.reshape(len(x), self.d_feat, -1)  # [N, F*T] -> [N, F, T] | ||||
|     x = x.permute(0, 2, 1)                  # [N, F, T] -> [N, T, F] | ||||
|     out = self.proj(x) | ||||
|     out = self.proj(x) * math.sqrt(self.embed_dim) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| @@ -375,7 +372,7 @@ class TransformerModel(nn.Module): | ||||
|          mlp_ratio: float = 4., | ||||
|          qkv_bias: bool = True, | ||||
|          qk_scale: Optional[float] = None, | ||||
|          drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None): | ||||
|          pos_dropout=0., mlp_drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None): | ||||
|     """ | ||||
|     Args: | ||||
|       d_feat (int, tuple): input image size | ||||
| @@ -385,7 +382,8 @@ class TransformerModel(nn.Module): | ||||
|       mlp_ratio (int): ratio of mlp hidden dim to embedding dim | ||||
|       qkv_bias (bool): enable bias for qkv if True | ||||
|       qk_scale (float): override default qk scale of head_dim ** -0.5 if set | ||||
|       drop_rate (float): dropout rate | ||||
|       pos_dropout (float): dropout rate for the positional embedding | ||||
|       mlp_drop_rate (float): the dropout rate for MLP layers in a block | ||||
|       attn_drop_rate (float): attention dropout rate | ||||
|       drop_path_rate (float): stochastic depth rate | ||||
|       norm_layer: (nn.Module): normalization layer | ||||
| @@ -398,14 +396,13 @@ class TransformerModel(nn.Module): | ||||
|     self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) | ||||
|  | ||||
|     self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | ||||
|     self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65) | ||||
|     self.pos_drop = nn.Dropout(p=drop_rate) | ||||
|     self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_dropout) | ||||
|  | ||||
|     dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule | ||||
|     self.blocks = nn.ModuleList([ | ||||
|       Block( | ||||
|         dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | ||||
|         drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | ||||
|         attn_drop=attn_drop_rate, mlp_drop=mlp_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | ||||
|       for i in range(depth)]) | ||||
|     self.norm = norm_layer(embed_dim) | ||||
|  | ||||
| @@ -431,7 +428,6 @@ class TransformerModel(nn.Module): | ||||
|     cls_tokens = self.cls_token.expand(batch, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks | ||||
|     feats_w_ct = torch.cat((cls_tokens, feats), dim=1) | ||||
|     feats_w_tp = self.pos_embed(feats_w_ct) | ||||
|     feats_w_tp = self.pos_drop(feats_w_tp) | ||||
|  | ||||
|     xfeats = feats_w_tp | ||||
|     for block in self.blocks: | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| from .evaluation_utils import obtain_accuracy | ||||
| from .gpu_manager      import GPUManager | ||||
| from .flop_benchmark   import get_model_infos, count_parameters_in_MB | ||||
| from .flop_benchmark   import get_model_infos, count_parameters, count_parameters_in_MB | ||||
| from .affine_utils     import normalize_points, denormalize_points | ||||
| from .affine_utils     import identity2affine, solve2theta, affine2image | ||||
| from .hash_utils       import get_md5_file | ||||
|   | ||||
		Reference in New Issue
	
	Block a user