Update REA, REINFORCE, and RANDOM
This commit is contained in:
parent
041a9aa4a3
commit
6dc494be08
@ -72,6 +72,14 @@ def test_api(api, is_301=True):
|
||||
print('{:}\n'.format(info))
|
||||
print('{:} finish testing the api : {:}'.format(time_string(), api))
|
||||
|
||||
if not is_301:
|
||||
arch_str = '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|'
|
||||
matrix = api.str2matrix(arch_str)
|
||||
print('Compute the adjacency matrix of {:}'.format(arch_str))
|
||||
print(matrix)
|
||||
info = api.simulate_train_eval(123, 'cifar10')
|
||||
print('simulate_train_eval : {:}'.format(info))
|
||||
|
||||
|
||||
def test_issue_81_82(api):
|
||||
results = api.query_by_index(0, 'cifar10-valid', hp='12')
|
||||
|
91
exps/algos-v2/random_wo_share.py
Normal file
91
exps/algos-v2/random_wo_share.py
Normal file
@ -0,0 +1,91 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
||||
##############################################################################
|
||||
# Random Search for Hyper-Parameter Optimization, JMLR 2012 ##################
|
||||
##############################################################################
|
||||
# python ./exps/algos-v2/random_wo_share.py --dataset cifar10 --search_space tss
|
||||
##############################################################################
|
||||
import os, sys, time, glob, random, argparse
|
||||
import numpy as np, collections
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from pathlib import Path
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import load_config, dict2config, configure2str
|
||||
from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||
from utils import get_model_infos, obtain_accuracy
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from models import get_search_spaces
|
||||
from nas_201_api import NASBench201API, NASBench301API
|
||||
from .regularized_ea import random_topology_func, random_size_func
|
||||
|
||||
|
||||
def main(xargs, api):
|
||||
torch.set_num_threads(4)
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
||||
if xargs.search_space == 'tss':
|
||||
random_arch = random_topology_func(search_space)
|
||||
else:
|
||||
random_arch = random_size_func(search_space)
|
||||
|
||||
x_start_time = time.time()
|
||||
logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
|
||||
best_arch, best_acc, total_time_cost, history = None, -1, [], []
|
||||
while total_time_cost[-1] < xargs.time_budget:
|
||||
arch = random_arch()
|
||||
accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
|
||||
total_time_cost.append(total_cost)
|
||||
history.append(arch)
|
||||
if best_arch is None or best_acc < accuracy:
|
||||
best_acc, best_arch = accuracy, arch
|
||||
logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy))
|
||||
logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s (real-cost = {:.3f} s).'.format(time_string(), best_arch, best_acc, len(history), total_time_cost, time.time()-x_start_time))
|
||||
|
||||
info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
|
||||
logger.log('{:}'.format(info))
|
||||
logger.log('-'*100)
|
||||
logger.close()
|
||||
return logger.log_dir, total_time_cost, history
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("Random NAS")
|
||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
||||
|
||||
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
# log
|
||||
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.search_space == 'tss':
|
||||
api = NASBench201API(verbose=False)
|
||||
elif args.search_space == 'sss':
|
||||
api = NASBench301API(verbose=False)
|
||||
else:
|
||||
raise ValueError('Invalid search space : {:}'.format(args.search_space))
|
||||
|
||||
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'RANDOM')
|
||||
print('save-dir : {:}'.format(args.save_dir))
|
||||
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_info = None, {}
|
||||
for i in range(args.loops_if_rand):
|
||||
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand))
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
save_dir, all_archs, all_total_times = main(args, api)
|
||||
all_info[i] = {'all_archs': all_archs,
|
||||
'all_total_times': all_total_times}
|
||||
save_path = save_dir / 'results.pth'
|
||||
print('save into {:}'.format(save_path))
|
||||
torch.save(all_info, save_path)
|
||||
else:
|
||||
main(args, api)
|
@ -3,12 +3,12 @@
|
||||
##################################################################
|
||||
# Regularized Evolution for Image Classifier Architecture Search #
|
||||
##################################################################
|
||||
# python ./exps/algos-v2/REA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset cifar100 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset cifar10 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset cifar100 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset ImageNet16-120 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
# python ./exps/algos-v2/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||||
##################################################################
|
||||
import os, sys, time, glob, random, argparse
|
||||
import numpy as np, collections
|
||||
@ -160,7 +160,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
|
||||
while len(population) < population_size:
|
||||
model = Model()
|
||||
model.arch = random_arch()
|
||||
model.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||||
model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||||
# Append the info
|
||||
population.append(model)
|
||||
history.append(model)
|
||||
@ -183,7 +183,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
|
||||
# Create the child model and store it.
|
||||
child = Model()
|
||||
child.arch = mutate_arch(parent.arch)
|
||||
child.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||||
child.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||||
# Append the info
|
||||
population.append(child)
|
||||
history.append(child)
|
||||
@ -195,11 +195,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran
|
||||
|
||||
|
||||
def main(xargs, api):
|
||||
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||
torch.backends.cudnn.enabled = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.set_num_threads(xargs.workers)
|
||||
torch.set_num_threads(4)
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
@ -235,12 +231,11 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--ea_cycles', type=int, help='The number of cycles in EA.')
|
||||
parser.add_argument('--ea_population', type=int, help='The population size in EA.')
|
||||
parser.add_argument('--ea_sample_size', type=int, help='The sample size in EA.')
|
||||
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
# log
|
||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.search_space == 'tss':
|
@ -3,12 +3,12 @@
|
||||
#####################################################################################################
|
||||
# modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py #
|
||||
#####################################################################################################
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.001
|
||||
# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.001
|
||||
#####################################################################################################
|
||||
import os, sys, time, glob, random, argparse
|
||||
import numpy as np, collections
|
||||
@ -120,15 +120,10 @@ def select_action(policy):
|
||||
|
||||
|
||||
def main(xargs, api):
|
||||
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||
torch.backends.cudnn.enabled = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.set_num_threads(xargs.workers)
|
||||
torch.set_num_threads(4)
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
|
||||
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
||||
if xargs.search_space == 'tss':
|
||||
policy = PolicyTopology(search_space)
|
||||
@ -144,6 +139,7 @@ def main(xargs, api):
|
||||
|
||||
# nas dataset load
|
||||
logger.log('{:} use api : {:}'.format(time_string(), api))
|
||||
api.reset_time()
|
||||
|
||||
# REINFORCE
|
||||
x_start_time = time.time()
|
||||
@ -153,7 +149,7 @@ def main(xargs, api):
|
||||
start_time = time.time()
|
||||
log_prob, action = select_action( policy )
|
||||
arch = policy.generate_arch( action )
|
||||
reward, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
|
||||
reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12')
|
||||
trace.append((reward, arch))
|
||||
total_costs.append(current_total_cost)
|
||||
|
||||
@ -177,7 +173,7 @@ def main(xargs, api):
|
||||
logger.log('-'*100)
|
||||
logger.close()
|
||||
|
||||
return logger.log_dir, [api.query_index_by_arch(x[0]) for x in trace], total_costs
|
||||
return logger.log_dir, [api.query_index_by_arch(x[1]) for x in trace], total_costs
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -186,15 +182,14 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
||||
parser.add_argument('--learning_rate', type=float, help='The learning rate for REINFORCE.')
|
||||
parser.add_argument('--EMA_momentum', type=float, default=0.9, help='The momentum value for EMA.')
|
||||
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
parser.add_argument('--EMA_momentum', type=float, default=0.9, help='The momentum value for EMA.')
|
||||
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
||||
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
||||
# log
|
||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
||||
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.search_space == 'tss':
|
||||
|
17
exps/algos-v2/run-all.sh
Normal file
17
exps/algos-v2/run-all.sh
Normal file
@ -0,0 +1,17 @@
|
||||
#!/bin/bash
|
||||
# bash ./exps/algos-v2/run-all.sh
|
||||
echo script name: $0
|
||||
echo $# arguments
|
||||
|
||||
datasets="cifar10 cifar100 ImageNet16-120"
|
||||
search_spaces="tss sss"
|
||||
|
||||
|
||||
for dataset in ${datasets}
|
||||
do
|
||||
for search_space in ${search_spaces}
|
||||
do
|
||||
python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001
|
||||
python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3
|
||||
done
|
||||
done
|
@ -84,7 +84,7 @@ def main(xargs, nas_bench):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
||||
parser = argparse.ArgumentParser("Random NAS")
|
||||
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||
# channels and number-of-cells
|
||||
|
107
exps/experimental/vis-bench-algos.py
Normal file
107
exps/experimental/vis-bench-algos.py
Normal file
@ -0,0 +1,107 @@
|
||||
###############################################################
|
||||
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
|
||||
###############################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
###############################################################
|
||||
# Usage: python exps/experimental/vis-bench-algos.py
|
||||
###############################################################
|
||||
import os, sys, time, torch, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict, OrderedDict
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
matplotlib.use('agg')
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import dict2config, load_config
|
||||
from nas_201_api import NASBench201API, NASBench301API
|
||||
from log_utils import time_string
|
||||
|
||||
|
||||
def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
|
||||
ss_dir = '{:}-{:}'.format(root_dir, search_space)
|
||||
alg2name, alg2path = OrderedDict(), OrderedDict()
|
||||
alg2name['REA'] = 'R-EA-SS3'
|
||||
alg2name['REINFORCE'] = 'REINFORCE-0.001'
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth')
|
||||
assert os.path.isfile(alg2path[alg])
|
||||
alg2data = OrderedDict()
|
||||
for alg, path in alg2path.items():
|
||||
data = torch.load(path)
|
||||
for index, info in data.items():
|
||||
info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])]
|
||||
for j, arch in enumerate(info['all_archs']):
|
||||
assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j)
|
||||
alg2data[alg] = data
|
||||
return alg2data
|
||||
|
||||
|
||||
def query_performance(api, data, dataset, ticket):
|
||||
results, is_301 = [], isinstance(api, NASBench301API)
|
||||
for i, info in data.items():
|
||||
time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket))
|
||||
time_a, arch_a = time_w_arch[0]
|
||||
time_b, arch_b = time_w_arch[1]
|
||||
info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_301 else 200, is_random=False)
|
||||
info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_301 else 200, is_random=False)
|
||||
accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy']
|
||||
interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b
|
||||
results.append(interplate)
|
||||
return sum(results) / len(results)
|
||||
|
||||
|
||||
def visualize_curve(api, vis_save_dir, search_space, max_time):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 250, 4700, 1500
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 14, 14
|
||||
|
||||
def sub_plot_fn(ax, dataset):
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
alg2accuracies = OrderedDict()
|
||||
time_tickets = [float(i) / 100 * max_time for i in range(100)]
|
||||
colors = ['b', 'g', 'c', 'm', 'y']
|
||||
for idx, (alg, data) in enumerate(alg2data.items()):
|
||||
print('plot alg : {:}'.format(alg))
|
||||
accuracies = []
|
||||
for ticket in time_tickets:
|
||||
accuracy = query_performance(api, data, dataset, ticket)
|
||||
accuracies.append(accuracy)
|
||||
alg2accuracies[alg] = accuracies
|
||||
ax.plot(time_tickets, accuracies, c=colors[idx], label='{:}'.format(alg))
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
||||
datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
|
||||
for dataset, ax in zip(datasets, axs):
|
||||
sub_plot_fn(ax, dataset)
|
||||
print('sub-plot {:} on {:} done.'.format(dataset, search_space))
|
||||
save_path = (vis_save_dir / '{:}-curve.png'.format(search_space)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
||||
print ('{:} save into {:}'.format(time_string(), save_path))
|
||||
plt.close('all')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--max_time', type=float, default=20000, help='The maximum time budget.')
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
|
||||
api201 = NASBench201API(verbose=False)
|
||||
visualize_curve(api201, save_dir, 'tss', args.max_time)
|
||||
api301 = NASBench301API(verbose=False)
|
||||
visualize_curve(api301, save_dir, 'sss', args.max_time)
|
||||
|
@ -3,7 +3,7 @@
|
||||
###############################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
###############################################################
|
||||
# Usage: python exps/NAS-Bench-201/test-nas-api-vis.py
|
||||
# Usage: python exps/experimental/visualize-nas-bench-x.py
|
||||
###############################################################
|
||||
import os, sys, time, torch, argparse
|
||||
import numpy as np
|
||||
@ -384,24 +384,25 @@ def visualize_all_rank_info(api, vis_save_dir, indicator):
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--save_dir', type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--check_N', type=int, default=32768, help='For safety.')
|
||||
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench', help='Folder to save checkpoints and log.')
|
||||
# use for train the model
|
||||
args = parser.parse_args()
|
||||
|
||||
to_save_dir = Path(args.save_dir)
|
||||
|
||||
datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
|
||||
api201 = NASBench201API(None, verbose=True)
|
||||
for xdata in datasets:
|
||||
visualize_tss_info(api201, xdata, Path('output/vis-nas-bench'))
|
||||
visualize_tss_info(api201, xdata, to_save_dir)
|
||||
|
||||
api301 = NASBench301API(None, verbose=True)
|
||||
for xdata in datasets:
|
||||
visualize_sss_info(api301, xdata, Path('output/vis-nas-bench'))
|
||||
visualize_sss_info(api301, xdata, to_save_dir)
|
||||
|
||||
visualize_info(None, Path('output/vis-nas-bench/'), 'tss')
|
||||
visualize_info(None, Path('output/vis-nas-bench/'), 'sss')
|
||||
visualize_rank_info(None, Path('output/vis-nas-bench/'), 'tss')
|
||||
visualize_rank_info(None, Path('output/vis-nas-bench/'), 'sss')
|
||||
visualize_info(None, to_save_dir, 'tss')
|
||||
visualize_info(None, to_save_dir, 'sss')
|
||||
visualize_rank_info(None, to_save_dir, 'tss')
|
||||
visualize_rank_info(None, to_save_dir, 'sss')
|
||||
|
||||
visualize_all_rank_info(None, Path('output/vis-nas-bench/'), 'tss')
|
||||
visualize_all_rank_info(None, Path('output/vis-nas-bench/'), 'sss')
|
||||
visualize_all_rank_info(None, to_save_dir, 'tss')
|
||||
visualize_all_rank_info(None, to_save_dir, 'sss')
|
@ -141,9 +141,12 @@ class NASBench201API(NASBenchMetaAPI):
|
||||
# `is_random`
|
||||
# When is_random=True, the performance of a random architecture will be returned
|
||||
# When is_random=False, the performanceo of all trials will be averaged.
|
||||
def get_more_info(self, index: int, dataset, iepoch=None, hp='12', is_random=True):
|
||||
def get_more_info(self, index, dataset, iepoch=None, hp='12', is_random=True):
|
||||
if self.verbose:
|
||||
print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
|
||||
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
||||
if index not in self.arch2infos_dict:
|
||||
raise ValueError('Did not find {:} from arch2infos_dict.'.format(index))
|
||||
archresult = self.arch2infos_dict[index][str(hp)]
|
||||
# if randomly select one trial, select the seed at first
|
||||
if isinstance(is_random, bool) and is_random:
|
||||
|
@ -131,7 +131,7 @@ class NASBench301API(NASBenchMetaAPI):
|
||||
print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp))
|
||||
return self._query_info_str_by_arch(arch, hp, print_information)
|
||||
|
||||
def get_more_info(self, index: int, dataset: Text, iepoch=None, hp='12', is_random=True):
|
||||
def get_more_info(self, index, dataset: Text, iepoch=None, hp='12', is_random=True):
|
||||
"""This function will return the metric for the `index`-th architecture
|
||||
`dataset` indicates the dataset:
|
||||
'cifar10-valid' : using the proposed train set of CIFAR-10 as the training set
|
||||
@ -151,6 +151,9 @@ class NASBench301API(NASBenchMetaAPI):
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
|
||||
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
||||
if index not in self.arch2infos_dict:
|
||||
raise ValueError('Did not find {:} from arch2infos_dict.'.format(index))
|
||||
archresult = self.arch2infos_dict[index][str(hp)]
|
||||
# if randomly select one trial, select the seed at first
|
||||
if isinstance(is_random, bool) and is_random:
|
||||
|
@ -68,7 +68,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
def reset_time(self):
|
||||
self._used_time = 0
|
||||
|
||||
def simulate_train_eval(self, arch, dataset, hp='12'):
|
||||
def simulate_train_eval(self, arch, dataset, hp='12', account_time=True):
|
||||
index = self.query_index_by_arch(arch)
|
||||
all_names = ('cifar10', 'cifar100', 'ImageNet16-120')
|
||||
assert dataset in all_names, 'Invalid dataset name : {:} vs {:}'.format(dataset, all_names)
|
||||
@ -77,8 +77,10 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
else:
|
||||
info = self.get_more_info(index, dataset, iepoch=None, hp=hp, is_random=True)
|
||||
valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time']
|
||||
self._used_time += time_cost
|
||||
return valid_acc, time_cost, self._used_time
|
||||
latency = self.get_latency(index, dataset)
|
||||
if account_time:
|
||||
self._used_time += time_cost
|
||||
return valid_acc, latency, time_cost, self._used_time
|
||||
|
||||
def random(self):
|
||||
"""Return a random index of all architectures."""
|
||||
|
@ -8,7 +8,9 @@ import torch.nn as nn
|
||||
from models import CellStructure
|
||||
from log_utils import time_string
|
||||
|
||||
|
||||
def evaluate_one_shot(model, xloader, api, cal_mode, seed=111):
|
||||
print ('This is an old version of codes to use NAS-Bench-API, and should be modified to align with the new version. Please contact me for more details if you use this function.')
|
||||
weights = deepcopy(model.state_dict())
|
||||
model.train(cal_mode)
|
||||
with torch.no_grad():
|
||||
|
Loading…
Reference in New Issue
Block a user