Update REA, REINFORCE, and RANDOM
This commit is contained in:
		| @@ -72,6 +72,14 @@ def test_api(api, is_301=True): | |||||||
|   print('{:}\n'.format(info)) |   print('{:}\n'.format(info)) | ||||||
|   print('{:} finish testing the api : {:}'.format(time_string(), api)) |   print('{:} finish testing the api : {:}'.format(time_string(), api)) | ||||||
|  |  | ||||||
|  |   if not is_301: | ||||||
|  |     arch_str = '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|' | ||||||
|  |     matrix = api.str2matrix(arch_str) | ||||||
|  |     print('Compute the adjacency matrix of {:}'.format(arch_str)) | ||||||
|  |     print(matrix) | ||||||
|  |   info = api.simulate_train_eval(123, 'cifar10') | ||||||
|  |   print('simulate_train_eval : {:}'.format(info)) | ||||||
|  |  | ||||||
|  |  | ||||||
| def test_issue_81_82(api): | def test_issue_81_82(api): | ||||||
|   results = api.query_by_index(0, 'cifar10-valid', hp='12') |   results = api.query_by_index(0, 'cifar10-valid', hp='12') | ||||||
|   | |||||||
							
								
								
									
										91
									
								
								exps/algos-v2/random_wo_share.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										91
									
								
								exps/algos-v2/random_wo_share.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,91 @@ | |||||||
|  | ################################################## | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||||
|  | ############################################################################## | ||||||
|  | # Random Search for Hyper-Parameter Optimization, JMLR 2012 ################## | ||||||
|  | ############################################################################## | ||||||
|  | # python ./exps/algos-v2/random_wo_share.py --dataset cifar10 --search_space tss | ||||||
|  | ############################################################################## | ||||||
|  | import os, sys, time, glob, random, argparse | ||||||
|  | import numpy as np, collections | ||||||
|  | from copy import deepcopy | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | from pathlib import Path | ||||||
|  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
|  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  | from config_utils import load_config, dict2config, configure2str | ||||||
|  | from datasets     import get_datasets, SearchDataset | ||||||
|  | from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||||
|  | from utils        import get_model_infos, obtain_accuracy | ||||||
|  | from log_utils    import AverageMeter, time_string, convert_secs2time | ||||||
|  | from models       import get_search_spaces | ||||||
|  | from nas_201_api  import NASBench201API, NASBench301API | ||||||
|  | from .regularized_ea import random_topology_func, random_size_func | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def main(xargs, api): | ||||||
|  |   torch.set_num_threads(4) | ||||||
|  |   prepare_seed(xargs.rand_seed) | ||||||
|  |   logger = prepare_logger(args) | ||||||
|  |  | ||||||
|  |   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') | ||||||
|  |   if xargs.search_space == 'tss': | ||||||
|  |     random_arch = random_topology_func(search_space) | ||||||
|  |   else: | ||||||
|  |     random_arch = random_size_func(search_space) | ||||||
|  |  | ||||||
|  |   x_start_time = time.time() | ||||||
|  |   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) | ||||||
|  |   best_arch, best_acc, total_time_cost, history = None, -1, [], [] | ||||||
|  |   while total_time_cost[-1] < xargs.time_budget: | ||||||
|  |     arch = random_arch() | ||||||
|  |     accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, '12') | ||||||
|  |     total_time_cost.append(total_cost) | ||||||
|  |     history.append(arch) | ||||||
|  |     if best_arch is None or best_acc < accuracy: | ||||||
|  |       best_acc, best_arch = accuracy, arch | ||||||
|  |     logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy)) | ||||||
|  |   logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s (real-cost = {:.3f} s).'.format(time_string(), best_arch, best_acc, len(history), total_time_cost, time.time()-x_start_time)) | ||||||
|  |    | ||||||
|  |   info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') | ||||||
|  |   logger.log('{:}'.format(info)) | ||||||
|  |   logger.log('-'*100) | ||||||
|  |   logger.close() | ||||||
|  |   return logger.log_dir, total_time_cost, history | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |   parser = argparse.ArgumentParser("Random NAS") | ||||||
|  |   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||||
|  |   parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||||
|  |  | ||||||
|  |   parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).') | ||||||
|  |   parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.') | ||||||
|  |   # log | ||||||
|  |   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||||
|  |   parser.add_argument('--rand_seed',          type=int,   default=-1,    help='manual seed') | ||||||
|  |   args = parser.parse_args() | ||||||
|  |    | ||||||
|  |   if args.search_space == 'tss': | ||||||
|  |     api = NASBench201API(verbose=False) | ||||||
|  |   elif args.search_space == 'sss': | ||||||
|  |     api = NASBench301API(verbose=False) | ||||||
|  |   else: | ||||||
|  |     raise ValueError('Invalid search space : {:}'.format(args.search_space)) | ||||||
|  |  | ||||||
|  |   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'RANDOM') | ||||||
|  |   print('save-dir : {:}'.format(args.save_dir)) | ||||||
|  |  | ||||||
|  |   if args.rand_seed < 0: | ||||||
|  |     save_dir, all_info = None, {} | ||||||
|  |     for i in range(args.loops_if_rand): | ||||||
|  |       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||||
|  |       args.rand_seed = random.randint(1, 100000) | ||||||
|  |       save_dir, all_archs, all_total_times = main(args, api) | ||||||
|  |       all_info[i] = {'all_archs': all_archs, | ||||||
|  |                      'all_total_times': all_total_times} | ||||||
|  |     save_path = save_dir / 'results.pth' | ||||||
|  |     print('save into {:}'.format(save_path)) | ||||||
|  |     torch.save(all_info, save_path) | ||||||
|  |   else: | ||||||
|  |     main(args, api) | ||||||
| @@ -3,12 +3,12 @@ | |||||||
| ################################################################## | ################################################################## | ||||||
| # Regularized Evolution for Image Classifier Architecture Search # | # Regularized Evolution for Image Classifier Architecture Search # | ||||||
| ################################################################## | ################################################################## | ||||||
| # python ./exps/algos-v2/REA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | # python ./exps/algos-v2/regularized_ea.py --dataset cifar10 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
| # python ./exps/algos-v2/REA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | # python ./exps/algos-v2/regularized_ea.py --dataset cifar100 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
| # python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | # python ./exps/algos-v2/regularized_ea.py --dataset ImageNet16-120 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
| # python ./exps/algos-v2/REA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | # python ./exps/algos-v2/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
| # python ./exps/algos-v2/REA.py --dataset cifar100 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | # python ./exps/algos-v2/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
| # python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | # python ./exps/algos-v2/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
| ################################################################## | ################################################################## | ||||||
| import os, sys, time, glob, random, argparse | import os, sys, time, glob, random, argparse | ||||||
| import numpy as np, collections | import numpy as np, collections | ||||||
| @@ -160,7 +160,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | |||||||
|   while len(population) < population_size: |   while len(population) < population_size: | ||||||
|     model = Model() |     model = Model() | ||||||
|     model.arch = random_arch() |     model.arch = random_arch() | ||||||
|     model.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12') |     model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12') | ||||||
|     # Append the info |     # Append the info | ||||||
|     population.append(model) |     population.append(model) | ||||||
|     history.append(model) |     history.append(model) | ||||||
| @@ -183,7 +183,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | |||||||
|     # Create the child model and store it. |     # Create the child model and store it. | ||||||
|     child = Model() |     child = Model() | ||||||
|     child.arch = mutate_arch(parent.arch) |     child.arch = mutate_arch(parent.arch) | ||||||
|     child.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12') |     child.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12') | ||||||
|     # Append the info |     # Append the info | ||||||
|     population.append(child) |     population.append(child) | ||||||
|     history.append(child) |     history.append(child) | ||||||
| @@ -195,11 +195,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | |||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def main(xargs, api): | def main(xargs, api): | ||||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' |   torch.set_num_threads(4) | ||||||
|   torch.backends.cudnn.enabled   = True |  | ||||||
|   torch.backends.cudnn.benchmark = False |  | ||||||
|   torch.backends.cudnn.deterministic = True |  | ||||||
|   torch.set_num_threads(xargs.workers) |  | ||||||
|   prepare_seed(xargs.rand_seed) |   prepare_seed(xargs.rand_seed) | ||||||
|   logger = prepare_logger(args) |   logger = prepare_logger(args) | ||||||
| 
 | 
 | ||||||
| @@ -235,12 +231,11 @@ if __name__ == '__main__': | |||||||
|   parser.add_argument('--ea_cycles',          type=int,   help='The number of cycles in EA.') |   parser.add_argument('--ea_cycles',          type=int,   help='The number of cycles in EA.') | ||||||
|   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.') |   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.') | ||||||
|   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.') |   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.') | ||||||
|   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).') |   parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).') | ||||||
|   parser.add_argument('--loops_if_rand',      type=int,   default=500, help='The total runs for evaluation.') |   parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.') | ||||||
|   # log |   # log | ||||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') |  | ||||||
|   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') |   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||||
|   parser.add_argument('--rand_seed',          type=int,   default=-1,   help='manual seed') |   parser.add_argument('--rand_seed',          type=int,   default=-1,    help='manual seed') | ||||||
|   args = parser.parse_args() |   args = parser.parse_args() | ||||||
| 
 | 
 | ||||||
|   if args.search_space == 'tss': |   if args.search_space == 'tss': | ||||||
| @@ -3,12 +3,12 @@ | |||||||
| ##################################################################################################### | ##################################################################################################### | ||||||
| # modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py # | # modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py # | ||||||
| ##################################################################################################### | ##################################################################################################### | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --time_budget 12000 --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.001  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --time_budget 12000 --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.001  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.001  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --time_budget 12000 --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.001  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --time_budget 12000 --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.001  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.001  | ||||||
| ##################################################################################################### | ##################################################################################################### | ||||||
| import os, sys, time, glob, random, argparse | import os, sys, time, glob, random, argparse | ||||||
| import numpy as np, collections | import numpy as np, collections | ||||||
| @@ -120,15 +120,10 @@ def select_action(policy): | |||||||
|  |  | ||||||
|  |  | ||||||
| def main(xargs, api): | def main(xargs, api): | ||||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' |   torch.set_num_threads(4) | ||||||
|   torch.backends.cudnn.enabled   = True |  | ||||||
|   torch.backends.cudnn.benchmark = False |  | ||||||
|   torch.backends.cudnn.deterministic = True |  | ||||||
|   torch.set_num_threads(xargs.workers) |  | ||||||
|   prepare_seed(xargs.rand_seed) |   prepare_seed(xargs.rand_seed) | ||||||
|   logger = prepare_logger(args) |   logger = prepare_logger(args) | ||||||
|    |    | ||||||
|    |  | ||||||
|   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') |   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') | ||||||
|   if xargs.search_space == 'tss': |   if xargs.search_space == 'tss': | ||||||
|     policy = PolicyTopology(search_space) |     policy = PolicyTopology(search_space) | ||||||
| @@ -144,6 +139,7 @@ def main(xargs, api): | |||||||
|  |  | ||||||
|   # nas dataset load |   # nas dataset load | ||||||
|   logger.log('{:} use api : {:}'.format(time_string(), api)) |   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||||
|  |   api.reset_time() | ||||||
|  |  | ||||||
|   # REINFORCE |   # REINFORCE | ||||||
|   x_start_time = time.time() |   x_start_time = time.time() | ||||||
| @@ -153,7 +149,7 @@ def main(xargs, api): | |||||||
|     start_time = time.time() |     start_time = time.time() | ||||||
|     log_prob, action = select_action( policy ) |     log_prob, action = select_action( policy ) | ||||||
|     arch   = policy.generate_arch( action ) |     arch   = policy.generate_arch( action ) | ||||||
|     reward, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12') |     reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12') | ||||||
|     trace.append((reward, arch)) |     trace.append((reward, arch)) | ||||||
|     total_costs.append(current_total_cost) |     total_costs.append(current_total_cost) | ||||||
|  |  | ||||||
| @@ -177,7 +173,7 @@ def main(xargs, api): | |||||||
|   logger.log('-'*100) |   logger.log('-'*100) | ||||||
|   logger.close() |   logger.close() | ||||||
|  |  | ||||||
|   return logger.log_dir, [api.query_index_by_arch(x[0]) for x in trace], total_costs |   return logger.log_dir, [api.query_index_by_arch(x[1]) for x in trace], total_costs | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
| @@ -186,15 +182,14 @@ if __name__ == '__main__': | |||||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') |   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||||
|   parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.') |   parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||||
|   parser.add_argument('--learning_rate',      type=float, help='The learning rate for REINFORCE.') |   parser.add_argument('--learning_rate',      type=float, help='The learning rate for REINFORCE.') | ||||||
|   parser.add_argument('--EMA_momentum',       type=float, default=0.9, help='The momentum value for EMA.') |   parser.add_argument('--EMA_momentum',       type=float, default=0.9,   help='The momentum value for EMA.') | ||||||
|   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).') |   parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).') | ||||||
|   parser.add_argument('--loops_if_rand',      type=int,   default=500, help='The total runs for evaluation.') |   parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.') | ||||||
|   # log |   # log | ||||||
|   parser.add_argument('--workers',            type=int,   default=2,   help='number of data loading workers (default: 2)') |  | ||||||
|   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') |   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') |   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') |   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||||
|   parser.add_argument('--rand_seed',          type=int,   default=-1,  help='manual seed') |   parser.add_argument('--rand_seed',          type=int,   default=-1,    help='manual seed') | ||||||
|   args = parser.parse_args() |   args = parser.parse_args() | ||||||
|  |  | ||||||
|   if args.search_space == 'tss': |   if args.search_space == 'tss': | ||||||
|   | |||||||
							
								
								
									
										17
									
								
								exps/algos-v2/run-all.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								exps/algos-v2/run-all.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,17 @@ | |||||||
|  | #!/bin/bash | ||||||
|  | # bash ./exps/algos-v2/run-all.sh | ||||||
|  | echo script name: $0 | ||||||
|  | echo $# arguments | ||||||
|  |  | ||||||
|  | datasets="cifar10 cifar100 ImageNet16-120" | ||||||
|  | search_spaces="tss sss" | ||||||
|  |  | ||||||
|  |  | ||||||
|  | for dataset in ${datasets} | ||||||
|  | do | ||||||
|  |   for search_space in ${search_spaces} | ||||||
|  |   do | ||||||
|  |     python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001 | ||||||
|  |     python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 | ||||||
|  |   done | ||||||
|  | done | ||||||
| @@ -84,7 +84,7 @@ def main(xargs, nas_bench): | |||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") |   parser = argparse.ArgumentParser("Random NAS") | ||||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') |   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') |   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||||
|   # channels and number-of-cells |   # channels and number-of-cells | ||||||
|   | |||||||
							
								
								
									
										107
									
								
								exps/experimental/vis-bench-algos.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								exps/experimental/vis-bench-algos.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,107 @@ | |||||||
|  | ############################################################### | ||||||
|  | # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||||
|  | ############################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||||
|  | ############################################################### | ||||||
|  | # Usage: python exps/experimental/vis-bench-algos.py  | ||||||
|  | ############################################################### | ||||||
|  | import os, sys, time, torch, argparse | ||||||
|  | import numpy as np | ||||||
|  | from typing import List, Text, Dict, Any | ||||||
|  | from shutil import copyfile | ||||||
|  | from collections import defaultdict, OrderedDict | ||||||
|  | from copy    import deepcopy | ||||||
|  | from pathlib import Path | ||||||
|  | import matplotlib | ||||||
|  | import seaborn as sns | ||||||
|  | matplotlib.use('agg') | ||||||
|  | import matplotlib.pyplot as plt | ||||||
|  | import matplotlib.ticker as ticker | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
|  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  | from config_utils import dict2config, load_config | ||||||
|  | from nas_201_api import NASBench201API, NASBench301API | ||||||
|  | from log_utils import time_string | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||||
|  |   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||||
|  |   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||||
|  |   alg2name['REA'] = 'R-EA-SS3' | ||||||
|  |   alg2name['REINFORCE'] = 'REINFORCE-0.001' | ||||||
|  |   for alg, name in alg2name.items(): | ||||||
|  |     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') | ||||||
|  |     assert os.path.isfile(alg2path[alg]) | ||||||
|  |   alg2data = OrderedDict() | ||||||
|  |   for alg, path in alg2path.items(): | ||||||
|  |     data = torch.load(path) | ||||||
|  |     for index, info in data.items(): | ||||||
|  |       info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])] | ||||||
|  |       for j, arch in enumerate(info['all_archs']): | ||||||
|  |         assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j) | ||||||
|  |     alg2data[alg] = data | ||||||
|  |   return alg2data | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def query_performance(api, data, dataset, ticket): | ||||||
|  |   results, is_301 = [], isinstance(api, NASBench301API) | ||||||
|  |   for i, info in data.items(): | ||||||
|  |     time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket)) | ||||||
|  |     time_a, arch_a = time_w_arch[0] | ||||||
|  |     time_b, arch_b = time_w_arch[1] | ||||||
|  |     info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_301 else 200, is_random=False) | ||||||
|  |     info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_301 else 200, is_random=False) | ||||||
|  |     accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy'] | ||||||
|  |     interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||||
|  |     results.append(interplate) | ||||||
|  |   return sum(results) / len(results) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def visualize_curve(api, vis_save_dir, search_space, max_time): | ||||||
|  |   vis_save_dir = vis_save_dir.resolve() | ||||||
|  |   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||||
|  |  | ||||||
|  |   dpi, width, height = 250, 4700, 1500 | ||||||
|  |   figsize = width / float(dpi), height / float(dpi) | ||||||
|  |   LabelSize, LegendFontsize = 14, 14 | ||||||
|  |  | ||||||
|  |   def sub_plot_fn(ax, dataset): | ||||||
|  |     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||||
|  |     alg2accuracies = OrderedDict() | ||||||
|  |     time_tickets = [float(i) / 100 * max_time for i in range(100)] | ||||||
|  |     colors = ['b', 'g', 'c', 'm', 'y'] | ||||||
|  |     for idx, (alg, data) in enumerate(alg2data.items()): | ||||||
|  |       print('plot alg : {:}'.format(alg)) | ||||||
|  |       accuracies = [] | ||||||
|  |       for ticket in time_tickets: | ||||||
|  |         accuracy = query_performance(api, data, dataset, ticket) | ||||||
|  |         accuracies.append(accuracy) | ||||||
|  |       alg2accuracies[alg] = accuracies | ||||||
|  |       ax.plot(time_tickets, accuracies, c=colors[idx], label='{:}'.format(alg)) | ||||||
|  |     ax.legend(loc=4, fontsize=LegendFontsize) | ||||||
|  |  | ||||||
|  |   fig, axs = plt.subplots(1, 3, figsize=figsize) | ||||||
|  |   datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] | ||||||
|  |   for dataset, ax in zip(datasets, axs): | ||||||
|  |     sub_plot_fn(ax, dataset) | ||||||
|  |     print('sub-plot {:} on {:} done.'.format(dataset, search_space)) | ||||||
|  |   save_path = (vis_save_dir / '{:}-curve.png'.format(search_space)).resolve() | ||||||
|  |   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||||
|  |   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||||
|  |   plt.close('all') | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||||
|  |   parser.add_argument('--save_dir',    type=str, default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.') | ||||||
|  |   parser.add_argument('--max_time',    type=float, default=20000, help='The maximum time budget.') | ||||||
|  |   args = parser.parse_args() | ||||||
|  |  | ||||||
|  |   save_dir = Path(args.save_dir) | ||||||
|  |  | ||||||
|  |   api201 = NASBench201API(verbose=False) | ||||||
|  |   visualize_curve(api201, save_dir, 'tss', args.max_time) | ||||||
|  |   api301 = NASBench301API(verbose=False) | ||||||
|  |   visualize_curve(api301, save_dir, 'sss', args.max_time) | ||||||
|  |  | ||||||
| @@ -3,7 +3,7 @@ | |||||||
| ############################################################### | ############################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||||
| ############################################################### | ############################################################### | ||||||
| # Usage: python exps/NAS-Bench-201/test-nas-api-vis.py | # Usage: python exps/experimental/visualize-nas-bench-x.py | ||||||
| ############################################################### | ############################################################### | ||||||
| import os, sys, time, torch, argparse | import os, sys, time, torch, argparse | ||||||
| import numpy as np | import numpy as np | ||||||
| @@ -384,24 +384,25 @@ def visualize_all_rank_info(api, vis_save_dir, indicator): | |||||||
| 
 | 
 | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) |   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||||
|   parser.add_argument('--save_dir',    type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.') |   parser.add_argument('--save_dir',    type=str, default='output/vis-nas-bench', help='Folder to save checkpoints and log.') | ||||||
|   parser.add_argument('--check_N',     type=int, default=32768,  help='For safety.') |  | ||||||
|   # use for train the model |   # use for train the model | ||||||
|   args = parser.parse_args() |   args = parser.parse_args() | ||||||
| 
 | 
 | ||||||
|  |   to_save_dir = Path(args.save_dir) | ||||||
|  | 
 | ||||||
|   datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] |   datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] | ||||||
|   api201 = NASBench201API(None, verbose=True) |   api201 = NASBench201API(None, verbose=True) | ||||||
|   for xdata in datasets: |   for xdata in datasets: | ||||||
|     visualize_tss_info(api201, xdata, Path('output/vis-nas-bench')) |     visualize_tss_info(api201, xdata, to_save_dir) | ||||||
| 
 | 
 | ||||||
|   api301 = NASBench301API(None, verbose=True) |   api301 = NASBench301API(None, verbose=True) | ||||||
|   for xdata in datasets: |   for xdata in datasets: | ||||||
|     visualize_sss_info(api301, xdata, Path('output/vis-nas-bench')) |     visualize_sss_info(api301, xdata, to_save_dir) | ||||||
| 
 | 
 | ||||||
|   visualize_info(None, Path('output/vis-nas-bench/'), 'tss') |   visualize_info(None, to_save_dir, 'tss') | ||||||
|   visualize_info(None, Path('output/vis-nas-bench/'), 'sss') |   visualize_info(None, to_save_dir, 'sss') | ||||||
|   visualize_rank_info(None, Path('output/vis-nas-bench/'), 'tss') |   visualize_rank_info(None, to_save_dir, 'tss') | ||||||
|   visualize_rank_info(None, Path('output/vis-nas-bench/'), 'sss') |   visualize_rank_info(None, to_save_dir, 'sss') | ||||||
| 
 | 
 | ||||||
|   visualize_all_rank_info(None, Path('output/vis-nas-bench/'), 'tss') |   visualize_all_rank_info(None, to_save_dir, 'tss') | ||||||
|   visualize_all_rank_info(None, Path('output/vis-nas-bench/'), 'sss') |   visualize_all_rank_info(None, to_save_dir, 'sss') | ||||||
| @@ -141,9 +141,12 @@ class NASBench201API(NASBenchMetaAPI): | |||||||
|   # `is_random` |   # `is_random` | ||||||
|   #   When is_random=True, the performance of a random architecture will be returned |   #   When is_random=True, the performance of a random architecture will be returned | ||||||
|   #   When is_random=False, the performanceo of all trials will be averaged. |   #   When is_random=False, the performanceo of all trials will be averaged. | ||||||
|   def get_more_info(self, index: int, dataset, iepoch=None, hp='12', is_random=True): |   def get_more_info(self, index, dataset, iepoch=None, hp='12', is_random=True): | ||||||
|     if self.verbose: |     if self.verbose: | ||||||
|       print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random)) |       print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random)) | ||||||
|  |     index = self.query_index_by_arch(index)  # To avoid the input is a string or an instance of a arch object | ||||||
|  |     if index not in self.arch2infos_dict: | ||||||
|  |       raise ValueError('Did not find {:} from arch2infos_dict.'.format(index)) | ||||||
|     archresult = self.arch2infos_dict[index][str(hp)] |     archresult = self.arch2infos_dict[index][str(hp)] | ||||||
|     # if randomly select one trial, select the seed at first |     # if randomly select one trial, select the seed at first | ||||||
|     if isinstance(is_random, bool) and is_random: |     if isinstance(is_random, bool) and is_random: | ||||||
|   | |||||||
| @@ -131,7 +131,7 @@ class NASBench301API(NASBenchMetaAPI): | |||||||
|       print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp)) |       print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp)) | ||||||
|     return self._query_info_str_by_arch(arch, hp, print_information) |     return self._query_info_str_by_arch(arch, hp, print_information) | ||||||
|  |  | ||||||
|   def get_more_info(self, index: int, dataset: Text, iepoch=None, hp='12', is_random=True): |   def get_more_info(self, index, dataset: Text, iepoch=None, hp='12', is_random=True): | ||||||
|     """This function will return the metric for the `index`-th architecture |     """This function will return the metric for the `index`-th architecture | ||||||
|        `dataset` indicates the dataset: |        `dataset` indicates the dataset: | ||||||
|           'cifar10-valid'  : using the proposed train set of CIFAR-10 as the training set |           'cifar10-valid'  : using the proposed train set of CIFAR-10 as the training set | ||||||
| @@ -151,6 +151,9 @@ class NASBench301API(NASBenchMetaAPI): | |||||||
|     """ |     """ | ||||||
|     if self.verbose: |     if self.verbose: | ||||||
|       print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random)) |       print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random)) | ||||||
|  |     index = self.query_index_by_arch(index)  # To avoid the input is a string or an instance of a arch object | ||||||
|  |     if index not in self.arch2infos_dict: | ||||||
|  |       raise ValueError('Did not find {:} from arch2infos_dict.'.format(index)) | ||||||
|     archresult = self.arch2infos_dict[index][str(hp)] |     archresult = self.arch2infos_dict[index][str(hp)] | ||||||
|     # if randomly select one trial, select the seed at first |     # if randomly select one trial, select the seed at first | ||||||
|     if isinstance(is_random, bool) and is_random: |     if isinstance(is_random, bool) and is_random: | ||||||
|   | |||||||
| @@ -68,7 +68,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | |||||||
|   def reset_time(self): |   def reset_time(self): | ||||||
|     self._used_time = 0 |     self._used_time = 0 | ||||||
|  |  | ||||||
|   def simulate_train_eval(self, arch, dataset, hp='12'): |   def simulate_train_eval(self, arch, dataset, hp='12', account_time=True): | ||||||
|     index = self.query_index_by_arch(arch) |     index = self.query_index_by_arch(arch) | ||||||
|     all_names = ('cifar10', 'cifar100', 'ImageNet16-120') |     all_names = ('cifar10', 'cifar100', 'ImageNet16-120') | ||||||
|     assert dataset in all_names, 'Invalid dataset name : {:} vs {:}'.format(dataset, all_names) |     assert dataset in all_names, 'Invalid dataset name : {:} vs {:}'.format(dataset, all_names) | ||||||
| @@ -77,8 +77,10 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | |||||||
|     else: |     else: | ||||||
|       info = self.get_more_info(index, dataset, iepoch=None, hp=hp, is_random=True) |       info = self.get_more_info(index, dataset, iepoch=None, hp=hp, is_random=True) | ||||||
|     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] |     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] | ||||||
|     self._used_time += time_cost |     latency = self.get_latency(index, dataset) | ||||||
|     return valid_acc, time_cost, self._used_time |     if account_time: | ||||||
|  |       self._used_time += time_cost | ||||||
|  |     return valid_acc, latency, time_cost, self._used_time | ||||||
|  |  | ||||||
|   def random(self): |   def random(self): | ||||||
|     """Return a random index of all architectures.""" |     """Return a random index of all architectures.""" | ||||||
|   | |||||||
| @@ -8,7 +8,9 @@ import torch.nn as nn | |||||||
| from models import CellStructure | from models import CellStructure | ||||||
| from log_utils import time_string | from log_utils import time_string | ||||||
|  |  | ||||||
|  |  | ||||||
| def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): | def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): | ||||||
|  |   print ('This is an old version of codes to use NAS-Bench-API, and should be modified to align with the new version. Please contact me for more details if you use this function.') | ||||||
|   weights = deepcopy(model.state_dict()) |   weights = deepcopy(model.state_dict()) | ||||||
|   model.train(cal_mode) |   model.train(cal_mode) | ||||||
|   with torch.no_grad(): |   with torch.no_grad(): | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user