Prototype generic nas model (cont.).
This commit is contained in:
parent
68f9d037eb
commit
7ca2ca70b4
@ -4,6 +4,14 @@
|
|||||||
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 1
|
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 1
|
||||||
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1
|
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1
|
||||||
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1
|
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1
|
||||||
|
####
|
||||||
|
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v2 --rand_seed 1
|
||||||
|
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2
|
||||||
|
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2
|
||||||
|
####
|
||||||
|
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 1
|
||||||
|
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas
|
||||||
|
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas
|
||||||
######################################################################################
|
######################################################################################
|
||||||
import os, sys, time, random, argparse
|
import os, sys, time, random, argparse
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -22,7 +30,7 @@ from models import get_cell_based_tiny_net, get_search_spaces
|
|||||||
from nas_201_api import NASBench201API as API
|
from nas_201_api import NASBench201API as API
|
||||||
|
|
||||||
|
|
||||||
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
|
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, algo, logger):
|
||||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||||
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||||
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||||
@ -30,15 +38,26 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
|||||||
network.train()
|
network.train()
|
||||||
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
|
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
|
||||||
scheduler.update(None, 1.0 * step / len(xloader))
|
scheduler.update(None, 1.0 * step / len(xloader))
|
||||||
|
base_inputs = base_inputs.cuda(non_blocking=True)
|
||||||
|
arch_inputs = arch_inputs.cuda(non_blocking=True)
|
||||||
base_targets = base_targets.cuda(non_blocking=True)
|
base_targets = base_targets.cuda(non_blocking=True)
|
||||||
arch_targets = arch_targets.cuda(non_blocking=True)
|
arch_targets = arch_targets.cuda(non_blocking=True)
|
||||||
# measure data loading time
|
# measure data loading time
|
||||||
data_time.update(time.time() - end)
|
data_time.update(time.time() - end)
|
||||||
|
|
||||||
# update the weights
|
# Update the weights
|
||||||
sampled_arch = network.module.dync_genotype(True)
|
if algo == 'setn':
|
||||||
network.module.set_cal_mode('dynamic', sampled_arch)
|
sampled_arch = network.dync_genotype(True)
|
||||||
#network.module.set_cal_mode( 'urs' )
|
network.set_cal_mode('dynamic', sampled_arch)
|
||||||
|
elif algo == 'gdas':
|
||||||
|
network.set_cal_mode('gdas', None)
|
||||||
|
elif algo.startswith('darts'):
|
||||||
|
network.set_cal_mode('joint', None)
|
||||||
|
elif algo == 'random':
|
||||||
|
network.set_cal_mode('urs', None)
|
||||||
|
else:
|
||||||
|
raise ValueError('Invalid algo name : {:}'.format(algo))
|
||||||
|
|
||||||
network.zero_grad()
|
network.zero_grad()
|
||||||
_, logits = network(base_inputs)
|
_, logits = network(base_inputs)
|
||||||
base_loss = criterion(logits, base_targets)
|
base_loss = criterion(logits, base_targets)
|
||||||
@ -51,7 +70,16 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
|||||||
base_top5.update (base_prec5.item(), base_inputs.size(0))
|
base_top5.update (base_prec5.item(), base_inputs.size(0))
|
||||||
|
|
||||||
# update the architecture-weight
|
# update the architecture-weight
|
||||||
network.module.set_cal_mode( 'joint' )
|
if algo == 'setn':
|
||||||
|
network.set_cal_mode('joint')
|
||||||
|
elif algo == 'gdas':
|
||||||
|
network.set_cal_mode('gdas', None)
|
||||||
|
elif algo.startswith('darts'):
|
||||||
|
network.set_cal_mode('joint', None)
|
||||||
|
elif algo == 'random':
|
||||||
|
network.set_cal_mode('urs', None)
|
||||||
|
else:
|
||||||
|
raise ValueError('Invalid algo name : {:}'.format(algo))
|
||||||
network.zero_grad()
|
network.zero_grad()
|
||||||
_, logits = network(arch_inputs)
|
_, logits = network(arch_inputs)
|
||||||
arch_loss = criterion(logits, arch_targets)
|
arch_loss = criterion(logits, arch_targets)
|
||||||
@ -73,36 +101,38 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
|||||||
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
|
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
|
||||||
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
|
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
|
||||||
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
|
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
|
||||||
#print (nn.functional.softmax(network.module.arch_parameters, dim=-1))
|
|
||||||
#print (network.module.arch_parameters)
|
|
||||||
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
|
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
|
||||||
|
|
||||||
|
|
||||||
def get_best_arch(xloader, network, n_samples):
|
def get_best_arch(xloader, network, n_samples, algo):
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
network.eval()
|
network.eval()
|
||||||
archs, valid_accs = network.module.return_topK(n_samples), []
|
if algo == 'random':
|
||||||
#print ('obtain the top-{:} architectures'.format(n_samples))
|
archs, valid_accs = network.return_topK(n_samples, True), []
|
||||||
|
elif algo == 'setn':
|
||||||
|
archs, valid_accs = network.return_topK(n_samples, False), []
|
||||||
|
elif algo.startswith('darts') or algo == 'gdas':
|
||||||
|
arch = network.genotype
|
||||||
|
archs, valid_accs = [arch], []
|
||||||
|
else:
|
||||||
|
raise ValueError('Invalid algorithm name : {:}'.format(algo))
|
||||||
loader_iter = iter(xloader)
|
loader_iter = iter(xloader)
|
||||||
for i, sampled_arch in enumerate(archs):
|
for i, sampled_arch in enumerate(archs):
|
||||||
network.module.set_cal_mode('dynamic', sampled_arch)
|
network.set_cal_mode('dynamic', sampled_arch)
|
||||||
try:
|
try:
|
||||||
inputs, targets = next(loader_iter)
|
inputs, targets = next(loader_iter)
|
||||||
except:
|
except:
|
||||||
loader_iter = iter(xloader)
|
loader_iter = iter(xloader)
|
||||||
inputs, targets = next(loader_iter)
|
inputs, targets = next(loader_iter)
|
||||||
|
_, logits = network(inputs.cuda(non_blocking=True))
|
||||||
_, logits = network(inputs)
|
|
||||||
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
|
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
|
||||||
|
|
||||||
valid_accs.append(val_top1.item())
|
valid_accs.append(val_top1.item())
|
||||||
|
|
||||||
best_idx = np.argmax(valid_accs)
|
best_idx = np.argmax(valid_accs)
|
||||||
best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
|
best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
|
||||||
return best_arch, best_valid_acc
|
return best_arch, best_valid_acc
|
||||||
|
|
||||||
|
|
||||||
def valid_func(xloader, network, criterion):
|
def valid_func(xloader, network, criterion, algo, logger):
|
||||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||||
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||||
end = time.time()
|
end = time.time()
|
||||||
@ -113,7 +143,7 @@ def valid_func(xloader, network, criterion):
|
|||||||
# measure data loading time
|
# measure data loading time
|
||||||
data_time.update(time.time() - end)
|
data_time.update(time.time() - end)
|
||||||
# prediction
|
# prediction
|
||||||
_, logits = network(arch_inputs)
|
_, logits = network(arch_inputs.cuda(non_blocking=True))
|
||||||
arch_loss = criterion(logits, arch_targets)
|
arch_loss = criterion(logits, arch_targets)
|
||||||
# record
|
# record
|
||||||
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||||
@ -166,7 +196,6 @@ def main(xargs):
|
|||||||
logger.log('{:} create API = {:} done'.format(time_string(), api))
|
logger.log('{:} create API = {:} done'.format(time_string(), api))
|
||||||
|
|
||||||
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
|
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
|
||||||
# network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
|
|
||||||
network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU
|
network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU
|
||||||
|
|
||||||
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
|
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
|
||||||
@ -185,7 +214,7 @@ def main(xargs):
|
|||||||
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
|
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
|
||||||
else:
|
else:
|
||||||
logger.log("=> do not find the last-info file : {:}".format(last_info))
|
logger.log("=> do not find the last-info file : {:}".format(last_info))
|
||||||
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}
|
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {-1: network.return_topK(1, True)[0]}
|
||||||
|
|
||||||
# start training
|
# start training
|
||||||
start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
|
start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
|
||||||
@ -195,28 +224,25 @@ def main(xargs):
|
|||||||
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
|
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
|
||||||
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr())))
|
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr())))
|
||||||
|
|
||||||
import pdb; pdb.set_trace()
|
|
||||||
|
|
||||||
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \
|
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \
|
||||||
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
|
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, xargs.algo, logger)
|
||||||
search_time.update(time.time() - start_time)
|
search_time.update(time.time() - start_time)
|
||||||
logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
|
logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
|
||||||
logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5))
|
logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5))
|
||||||
|
|
||||||
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num)
|
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo)
|
||||||
network.module.set_cal_mode('dynamic', genotype)
|
if xargs.algo == 'setn':
|
||||||
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
network.set_cal_mode('dynamic', genotype)
|
||||||
|
elif xargs.algo == 'gdas':
|
||||||
|
network.set_cal_mode('gdas', None)
|
||||||
|
elif xargs.algo.startswith('darts'):
|
||||||
|
network.set_cal_mode('joint', None)
|
||||||
|
elif xargs.algo == 'random':
|
||||||
|
network.set_cal_mode('urs', None)
|
||||||
|
else:
|
||||||
|
raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo))
|
||||||
|
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion, xargs.algo, logger)
|
||||||
logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype))
|
logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype))
|
||||||
#search_model.set_cal_mode('urs')
|
|
||||||
#valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
||||||
#logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
|
|
||||||
#search_model.set_cal_mode('joint')
|
|
||||||
#valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
||||||
#logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
|
|
||||||
#search_model.set_cal_mode('select')
|
|
||||||
#valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
|
||||||
#logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
|
|
||||||
# check the best accuracy
|
|
||||||
valid_accuracies[epoch] = valid_a_top1
|
valid_accuracies[epoch] = valid_a_top1
|
||||||
|
|
||||||
genotypes[epoch] = genotype
|
genotypes[epoch] = genotype
|
||||||
@ -245,15 +271,25 @@ def main(xargs):
|
|||||||
|
|
||||||
# the final post procedure : count the time
|
# the final post procedure : count the time
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num)
|
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo)
|
||||||
|
if xargs.algo == 'setn':
|
||||||
|
network.set_cal_mode('dynamic', genotype)
|
||||||
|
elif xargs.algo == 'gdas':
|
||||||
|
network.set_cal_mode('gdas', None)
|
||||||
|
elif xargs.algo.startswith('darts'):
|
||||||
|
network.set_cal_mode('joint', None)
|
||||||
|
elif xargs.algo == 'random':
|
||||||
|
network.set_cal_mode('urs', None)
|
||||||
|
else:
|
||||||
|
raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo))
|
||||||
search_time.update(time.time() - start_time)
|
search_time.update(time.time() - start_time)
|
||||||
network.module.set_cal_mode('dynamic', genotype)
|
|
||||||
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
|
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion, xargs.algo, logger)
|
||||||
logger.log('Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'.format(genotype, valid_a_top1))
|
logger.log('Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'.format(genotype, valid_a_top1))
|
||||||
|
|
||||||
logger.log('\n' + '-'*100)
|
logger.log('\n' + '-'*100)
|
||||||
# check the performance from the architecture dataset
|
# check the performance from the architecture dataset
|
||||||
logger.log('SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, genotype))
|
logger.log('[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(xargs.algo, total_epoch, search_time.sum, genotype))
|
||||||
if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '200') ))
|
if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '200') ))
|
||||||
logger.close()
|
logger.close()
|
||||||
|
|
||||||
@ -281,7 +317,7 @@ if __name__ == '__main__':
|
|||||||
# log
|
# log
|
||||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||||
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||||||
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
parser.add_argument('--print_freq', type=int, default=200, help='print frequency (default: 200)')
|
||||||
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||||
|
@ -242,6 +242,16 @@ class PartAwareOp(nn.Module):
|
|||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
|
|
||||||
|
def drop_path(x, drop_prob):
|
||||||
|
if drop_prob > 0.:
|
||||||
|
keep_prob = 1. - drop_prob
|
||||||
|
mask = x.new_zeros(x.size(0), 1, 1, 1)
|
||||||
|
mask = mask.bernoulli_(keep_prob)
|
||||||
|
x = torch.div(x, keep_prob)
|
||||||
|
x.mul_(mask)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
# Searching for A Robust Neural Architecture in Four GPU Hours
|
# Searching for A Robust Neural Architecture in Four GPU Hours
|
||||||
class GDAS_Reduction_Cell(nn.Module):
|
class GDAS_Reduction_Cell(nn.Module):
|
||||||
|
|
||||||
|
@ -6,7 +6,7 @@ import torch.nn as nn
|
|||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from typing import Text
|
from typing import Text
|
||||||
|
|
||||||
from ..cell_operations import ResNetBasicblock
|
from ..cell_operations import ResNetBasicblock, drop_path
|
||||||
from .search_cells import NAS201SearchCell as SearchCell
|
from .search_cells import NAS201SearchCell as SearchCell
|
||||||
from .genotypes import Structure
|
from .genotypes import Structure
|
||||||
from .search_model_enas_utils import Controller
|
from .search_model_enas_utils import Controller
|
||||||
@ -48,6 +48,7 @@ class GenericNAS201Model(nn.Module):
|
|||||||
self.dynamic_cell = None
|
self.dynamic_cell = None
|
||||||
self._tau = None
|
self._tau = None
|
||||||
self._algo = None
|
self._algo = None
|
||||||
|
self._drop_path = None
|
||||||
|
|
||||||
def set_algo(self, algo: Text):
|
def set_algo(self, algo: Text):
|
||||||
# used for searching
|
# used for searching
|
||||||
@ -62,7 +63,7 @@ class GenericNAS201Model(nn.Module):
|
|||||||
|
|
||||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||||
assert mode in ['gdas', 'enas', 'urs', 'joint', 'select', 'dynamic']
|
assert mode in ['gdas', 'enas', 'urs', 'joint', 'select', 'dynamic']
|
||||||
self.mode = mode
|
self._mode = mode
|
||||||
if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell)
|
if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell)
|
||||||
else : self.dynamic_cell = None
|
else : self.dynamic_cell = None
|
||||||
|
|
||||||
@ -70,6 +71,10 @@ class GenericNAS201Model(nn.Module):
|
|||||||
def mode(self):
|
def mode(self):
|
||||||
return self._mode
|
return self._mode
|
||||||
|
|
||||||
|
@property
|
||||||
|
def drop_path(self):
|
||||||
|
return self._drop_path
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def weights(self):
|
def weights(self):
|
||||||
xlist = list(self._stem.parameters())
|
xlist = list(self._stem.parameters())
|
||||||
@ -100,6 +105,15 @@ class GenericNAS201Model(nn.Module):
|
|||||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr())
|
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr())
|
||||||
return string
|
return string
|
||||||
|
|
||||||
|
def show_alphas(self):
|
||||||
|
with torch.no_grad():
|
||||||
|
if self._algo == 'enas':
|
||||||
|
import pdb; pdb.set_trace()
|
||||||
|
print('-')
|
||||||
|
else:
|
||||||
|
return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
|
||||||
|
|
||||||
|
|
||||||
def extra_repr(self):
|
def extra_repr(self):
|
||||||
return ('{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})'.format(name=self.__class__.__name__, **self.__dict__))
|
return ('{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||||
|
|
||||||
@ -112,7 +126,7 @@ class GenericNAS201Model(nn.Module):
|
|||||||
node_str = '{:}<-{:}'.format(i, j)
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
weights = self.arch_parameters[ self.edge2index[node_str] ]
|
weights = self.arch_parameters[ self.edge2index[node_str] ]
|
||||||
op_name = self.op_names[ weights.argmax().item() ]
|
op_name = self._op_names[ weights.argmax().item() ]
|
||||||
xlist.append((op_name, j))
|
xlist.append((op_name, j))
|
||||||
genotypes.append(tuple(xlist))
|
genotypes.append(tuple(xlist))
|
||||||
return Structure(genotypes)
|
return Structure(genotypes)
|
||||||
@ -126,11 +140,11 @@ class GenericNAS201Model(nn.Module):
|
|||||||
for j in range(i):
|
for j in range(i):
|
||||||
node_str = '{:}<-{:}'.format(i, j)
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
if use_random:
|
if use_random:
|
||||||
op_name = random.choice(self.op_names)
|
op_name = random.choice(self._op_names)
|
||||||
else:
|
else:
|
||||||
weights = alphas_cpu[ self.edge2index[node_str] ]
|
weights = alphas_cpu[ self.edge2index[node_str] ]
|
||||||
op_index = torch.multinomial(weights, 1).item()
|
op_index = torch.multinomial(weights, 1).item()
|
||||||
op_name = self.op_names[ op_index ]
|
op_name = self._op_names[ op_index ]
|
||||||
xlist.append((op_name, j))
|
xlist.append((op_name, j))
|
||||||
genotypes.append(tuple(xlist))
|
genotypes.append(tuple(xlist))
|
||||||
return Structure(genotypes)
|
return Structure(genotypes)
|
||||||
@ -142,17 +156,20 @@ class GenericNAS201Model(nn.Module):
|
|||||||
for i, node_info in enumerate(arch.nodes):
|
for i, node_info in enumerate(arch.nodes):
|
||||||
for op, xin in node_info:
|
for op, xin in node_info:
|
||||||
node_str = '{:}<-{:}'.format(i+1, xin)
|
node_str = '{:}<-{:}'.format(i+1, xin)
|
||||||
op_index = self.op_names.index(op)
|
op_index = self._op_names.index(op)
|
||||||
select_logits.append( logits[self.edge2index[node_str], op_index] )
|
select_logits.append( logits[self.edge2index[node_str], op_index] )
|
||||||
return sum(select_logits).item()
|
return sum(select_logits).item()
|
||||||
|
|
||||||
def return_topK(self, K):
|
def return_topK(self, K, use_random=False):
|
||||||
archs = Structure.gen_all(self.op_names, self._max_nodes, False)
|
archs = Structure.gen_all(self._op_names, self._max_nodes, False)
|
||||||
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
|
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
|
||||||
if K < 0 or K >= len(archs): K = len(archs)
|
if K < 0 or K >= len(archs): K = len(archs)
|
||||||
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
|
if use_random:
|
||||||
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
|
return random.sample(archs, K)
|
||||||
return return_pairs
|
else:
|
||||||
|
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
|
||||||
|
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
|
||||||
|
return return_pairs
|
||||||
|
|
||||||
def normalize_archp(self):
|
def normalize_archp(self):
|
||||||
if self.mode == 'gdas':
|
if self.mode == 'gdas':
|
||||||
|
Loading…
Reference in New Issue
Block a user