Update Auto-ReID
This commit is contained in:
parent
d28826793d
commit
7f13385f28
@ -5,6 +5,7 @@ This project contains the following neural architecture search algorithms, imple
|
||||
- Network Pruning via Transformable Architecture Search, NeurIPS 2019
|
||||
- One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
|
||||
- Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019
|
||||
- Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
|
||||
|
||||
|
||||
## Requirements and Preparation
|
||||
@ -90,6 +91,12 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_
|
||||
Searching codes come soon! A small example forward code segment for searching can be found in [this issue](https://github.com/D-X-Y/NAS-Projects/issues/12).
|
||||
|
||||
|
||||
## [Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification](https://arxiv.org/abs/1903.09776)
|
||||
|
||||
The part-aware module is defined at [here](https://github.com/D-X-Y/NAS-Projects/blob/master/lib/models/cell_searchs/operations.py#L85).
|
||||
|
||||
For more questions, please contact Ruijie Quan (Ruijie.Quan@student.uts.edu.au).
|
||||
|
||||
# Citation
|
||||
|
||||
If you find that this project helps your research, please consider citing some of the following papers:
|
||||
|
@ -111,3 +111,52 @@ class FactorizedReduce(nn.Module):
|
||||
|
||||
def extra_repr(self):
|
||||
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
|
||||
|
||||
|
||||
# Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
|
||||
class PartAwareOp(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, stride, part=4):
|
||||
super().__init__()
|
||||
self.part = 4
|
||||
self.hidden = C_in // 3
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.local_conv_list = nn.ModuleList()
|
||||
for i in range(self.part):
|
||||
self.local_conv_list.append(
|
||||
nn.Sequential(nn.ReLU(), nn.Conv2d(C_in, self.hidden, 1), nn.BatchNorm2d(self.hidden, affine=True))
|
||||
)
|
||||
self.W_K = nn.Linear(self.hidden, self.hidden)
|
||||
self.W_Q = nn.Linear(self.hidden, self.hidden)
|
||||
|
||||
if stride == 2 : self.last = FactorizedReduce(C_in + self.hidden, C_out, 2)
|
||||
elif stride == 1: self.last = FactorizedReduce(C_in + self.hidden, C_out, 1)
|
||||
else: raise ValueError('Invalid Stride : {:}'.format(stride))
|
||||
|
||||
def forward(self, x):
|
||||
batch, C, H, W = x.size()
|
||||
assert H >= self.part, 'input size too small : {:} vs {:}'.format(x.shape, self.part)
|
||||
IHs = [0]
|
||||
for i in range(self.part): IHs.append( min(H, int((i+1)*(float(H)/self.part))) )
|
||||
local_feat_list = []
|
||||
for i in range(self.part):
|
||||
feature = x[:, :, IHs[i]:IHs[i+1], :]
|
||||
xfeax = self.avg_pool(feature)
|
||||
xfea = self.local_conv_list[i]( xfeax )
|
||||
local_feat_list.append( xfea )
|
||||
part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part)
|
||||
part_feature = part_feature.transpose(1,2).contiguous()
|
||||
part_K = self.W_K(part_feature)
|
||||
part_Q = self.W_Q(part_feature).transpose(1,2).contiguous()
|
||||
weight_att = torch.bmm(part_K, part_Q)
|
||||
attention = torch.softmax(weight_att, dim=2)
|
||||
aggreateF = torch.bmm(attention, part_feature).transpose(1,2).contiguous()
|
||||
features = []
|
||||
for i in range(self.part):
|
||||
feature = aggreateF[:, :, i:i+1].expand(batch, self.hidden, IHs[i+1]-IHs[i])
|
||||
feature = feature.view(batch, self.hidden, IHs[i+1]-IHs[i], 1)
|
||||
features.append( feature )
|
||||
features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W)
|
||||
final_fea = torch.cat((x,features), dim=1)
|
||||
outputs = self.last( final_fea )
|
||||
return outputs
|
||||
|
Loading…
Reference in New Issue
Block a user