diff --git a/exps/NAS-Bench-201/dist-setup.py b/exps/NAS-Bench-201/dist-setup.py index a62447e..8ea4782 100644 --- a/exps/NAS-Bench-201/dist-setup.py +++ b/exps/NAS-Bench-201/dist-setup.py @@ -1,7 +1,9 @@ ##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # ##################################################### -# [2020.03.09] Upgrade to v1.2 +# [2020.02.25] Initialize the API as v1.1 +# [2020.03.09] Upgrade the API to v1.2 +# [2020.03.16] Upgrade the API to v1.3 import os from setuptools import setup @@ -13,7 +15,7 @@ def read(fname='README.md'): setup( name = "nas_bench_201", - version = "1.2", + version = "1.3", author = "Xuanyi Dong", author_email = "dongxuanyi888@gmail.com", description = "API for NAS-Bench-201 (a benchmark for neural architecture search).", diff --git a/exps/NAS-Bench-201/test-weights.py b/exps/NAS-Bench-201/test-weights.py index 0ba08d1..abc973f 100644 --- a/exps/NAS-Bench-201/test-weights.py +++ b/exps/NAS-Bench-201/test-weights.py @@ -37,7 +37,8 @@ def evaluate(api, weight_dir, data: str, use_12epochs_result: bool): final_val_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) for idx in range(len(api)): - info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False) + # info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False) + # import pdb; pdb.set_trace() for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']: info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False) if key == 'cifar10-valid': @@ -50,7 +51,7 @@ def evaluate(api, weight_dir, data: str, use_12epochs_result: bool): config = api.get_net_config(idx, data) net = get_cell_based_tiny_net(config) api.reload(weight_dir, idx) - params = api.get_net_param(idx, data, None) + params = api.get_net_param(idx, data, None, use_12epochs_result=use_12epochs_result) cur_norms = [] for seed, param in params.items(): with torch.no_grad():