Update find_best API

This commit is contained in:
D-X-Y 2020-11-20 09:52:29 +08:00
parent a9eec30b05
commit 8949d0b18e
3 changed files with 60 additions and 6 deletions

47
exps/show-dataset.py Normal file
View File

@ -0,0 +1,47 @@
##############################################################################
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
##############################################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 #
##############################################################################
# python ./exps/NATS-Bench/main-tss.py --mode meta #
##############################################################################
import os, sys, time, torch, random, argparse
from typing import List, Text, Dict, Any
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import dict2config, load_config
from datasets import get_datasets
from nats_bench import create
def show_imagenet_16_120(dataset_dir=None):
if dataset_dir is None:
torch_home_dir = os.environ['TORCH_HOME'] if 'TORCH_HOME' in os.environ else os.path.join(os.environ['HOME'], '.torch')
dataset_dir = os.path.join(torch_home_dir, 'cifar.python', 'ImageNet16')
train_data, valid_data, xshape, class_num = get_datasets('ImageNet16-120', dataset_dir, -1)
split_info = load_config('configs/nas-benchmark/ImageNet16-120-split.txt', None, None)
print('=' * 10 + ' ImageNet-16-120 ' + '=' * 10)
print('Training Data: {:}'.format(train_data))
print('Evaluation Data: {:}'.format(valid_data))
print('Hold-out training: {:} images.'.format(len(split_info.train)))
print('Hold-out valid : {:} images.'.format(len(split_info.valid)))
if __name__ == '__main__':
# show_imagenet_16_120()
api_nats_tss = create(None, 'tss', fast_mode=True, verbose=True)
valid_acc_12e = []
test_acc_12e = []
test_acc_200e = []
for index in range(10000):
info = api_nats_tss.get_more_info(index, 'ImageNet16-120', hp='12')
valid_acc_12e.append(info['valid-accuracy'])
test_acc_12e.append(info['test-accuracy'])
info = api_nats_tss.get_more_info(index, 'ImageNet16-120', hp='200')
test_acc_200e.append(info['test-accuracy']) # which I reported.

View File

@ -92,6 +92,10 @@ class ImageNet16(data.Dataset):
#std_data = np.mean(np.mean(std_data, axis=0), axis=0)
#print ('Std : {:}'.format(std_data))
def __repr__(self):
return ('{name}({num} images, {classes} classes)'.format(name=self.__class__.__name__, num=len(self.data), classes=len(set(self.targets))))
def __getitem__(self, index):
img, target = self.data[index], self.targets[index] - 1
@ -114,16 +118,16 @@ class ImageNet16(data.Dataset):
return False
return True
#
"""
if __name__ == '__main__':
train = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', True , None)
valid = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', False, None)
train = ImageNet16('~/.torch/cifar.python/ImageNet16', True , None)
valid = ImageNet16('~/.torch/cifar.python/ImageNet16', False, None)
print ( len(train) )
print ( len(valid) )
image, label = train[111]
trainX = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', True , None, 200)
validX = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', False , None, 200)
trainX = ImageNet16('~/.torch/cifar.python/ImageNet16', True , None, 200)
validX = ImageNet16('~/.torch/cifar.python/ImageNet16', False , None, 200)
print ( len(trainX) )
print ( len(validX) )
#import pdb; pdb.set_trace()
"""

View File

@ -482,6 +482,7 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
best_index, highest_accuracy = -1, None
evaluated_indexes = sorted(list(self.evaluated_indexes))
for arch_index in evaluated_indexes:
self._prepare_info(arch_index)
arch_info = self.arch2infos_dict[arch_index][hp]
info = arch_info.get_compute_costs(dataset) # the information of costs
flop, param, latency = info['flops'], info['params'], info['latency']
@ -622,6 +623,8 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
print('<' * 40 + '------------' + '<' * 40)
else:
if 0 <= index < len(self.meta_archs):
if index not in self.evaluated_indexes:
self._prepare_info(index)
if index not in self.evaluated_indexes:
print('The {:}-th architecture has not been evaluated '
'or not saved.'.format(index))