update code styles
This commit is contained in:
		| @@ -15,14 +15,16 @@ def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): | ||||
|   with torch.no_grad(): | ||||
|     logits = nn.functional.log_softmax(model.arch_parameters, dim=-1) | ||||
|     archs = CellStructure.gen_all(model.op_names, model.max_nodes, False) | ||||
|     probs, accuracies, gt_accs = [], [], [] | ||||
|     probs, accuracies, gt_accs_10_valid, gt_accs_10_test = [], [], [], [] | ||||
|     loader_iter = iter(xloader) | ||||
|     random.seed(seed) | ||||
|     random.shuffle(archs) | ||||
|     for idx, arch in enumerate(archs): | ||||
|       arch_index = api.query_index_by_arch( arch ) | ||||
|       metrics = api.get_more_info(arch_index, 'cifar10-valid', None, False, False) | ||||
|       gt_accs.append( metrics['valid-accuracy'] ) | ||||
|       gt_accs_10_valid.append( metrics['valid-accuracy'] ) | ||||
|       metrics = api.get_more_info(arch_index, 'cifar10', None, False, False) | ||||
|       gt_accs_10_test.append( metrics['test-accuracy'] ) | ||||
|       select_logits = [] | ||||
|       for i, node_info in enumerate(arch.nodes): | ||||
|         for op, xin in node_info: | ||||
| @@ -31,8 +33,9 @@ def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): | ||||
|           select_logits.append( logits[model.edge2index[node_str], op_index] ) | ||||
|       cur_prob = sum(select_logits).item() | ||||
|       probs.append( cur_prob ) | ||||
|     cor_prob = np.corrcoef(probs, gt_accs)[0,1] | ||||
|     print ('correlation for probabilities : {:}'.format(cor_prob)) | ||||
|     cor_prob_valid = np.corrcoef(probs, gt_accs_10_valid)[0,1] | ||||
|     cor_prob_test  = np.corrcoef(probs, gt_accs_10_test )[0,1] | ||||
|     print ('{:} correlation for probabilities : {:.6f} on CIFAR-10 validation and {:.6f} on CIFAR-10 test'.format(time_string(), cor_prob_valid, cor_prob_test)) | ||||
|        | ||||
|     for idx, arch in enumerate(archs): | ||||
|       model.set_cal_mode('dynamic', arch) | ||||
| @@ -45,8 +48,9 @@ def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): | ||||
|       _, preds  = torch.max(logits, dim=-1) | ||||
|       correct = (preds == targets.cuda() ).float() | ||||
|       accuracies.append( correct.mean().item() ) | ||||
|       if idx != 0 and (idx % 300 == 0 or idx + 1 == len(archs) or idx == 10): | ||||
|         cor_accs = np.corrcoef(accuracies, gt_accs[:idx+1])[0,1] | ||||
|         print ('{:} {:03d}/{:03d} mode={:5s}, correlation : accs={:.4f}, arch={:}'.format(time_string(), idx, len(archs), 'Train' if cal_mode else 'Eval', cor_accs, arch)) | ||||
|       if idx != 0 and (idx % 500 == 0 or idx + 1 == len(archs)): | ||||
|         cor_accs_valid = np.corrcoef(accuracies, gt_accs_10_valid[:idx+1])[0,1] | ||||
|         cor_accs_test  = np.corrcoef(accuracies, gt_accs_10_test [:idx+1])[0,1] | ||||
|         print ('{:} {:05d}/{:05d} mode={:5s}, correlation : accs={:.5f} for CIFAR-10 valid, {:.5f} for CIFAR-10 test.'.format(time_string(), idx, len(archs), 'Train' if cal_mode else 'Eval', cor_accs_valid, cor_accs_test)) | ||||
|   model.load_state_dict(weights) | ||||
|   return archs, probs, accuracies | ||||
|   | ||||
		Reference in New Issue
	
	Block a user