Update NATS-Bench (tss version 1.0) and remove the trace of 301
This commit is contained in:
parent
bd9288f45d
commit
9db28392c2
@ -26,7 +26,7 @@ from log_utils import time_string
|
||||
from models import get_cell_based_tiny_net, CellStructure
|
||||
|
||||
|
||||
def test_api(api, is_301=True):
|
||||
def test_api(api, sss_or_tss=True):
|
||||
print('{:} start testing the api : {:}'.format(time_string(), api))
|
||||
api.clear_params(12)
|
||||
api.reload(index=12)
|
||||
@ -39,7 +39,7 @@ def test_api(api, is_301=True):
|
||||
info = api.query_by_index(113, 'cifar100')
|
||||
print('{:}\n'.format(info))
|
||||
|
||||
info = api.query_meta_info_by_index(115, '90' if is_301 else '200')
|
||||
info = api.query_meta_info_by_index(115, '90' if sss_or_tss else '200')
|
||||
print('{:}\n'.format(info))
|
||||
|
||||
for dataset in ['cifar10', 'cifar100', 'ImageNet16-120']:
|
||||
@ -48,6 +48,7 @@ def test_api(api, is_301=True):
|
||||
print('')
|
||||
params = api.get_net_param(12, 'cifar10', None)
|
||||
|
||||
import pdb; pdb.set_trace()
|
||||
# Obtain the config and create the network
|
||||
config = api.get_net_config(12, 'cifar10')
|
||||
print('{:}\n'.format(config))
|
||||
@ -74,7 +75,7 @@ def test_api(api, is_301=True):
|
||||
print('{:}\n'.format(info))
|
||||
print('{:} finish testing the api : {:}'.format(time_string(), api))
|
||||
|
||||
if not is_301:
|
||||
if not sss_or_tss:
|
||||
arch_str = '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|'
|
||||
matrix = api.str2matrix(arch_str)
|
||||
print('Compute the adjacency matrix of {:}'.format(arch_str))
|
||||
@ -88,13 +89,13 @@ if __name__ == '__main__':
|
||||
# api201 = create('./output/NATS-Bench-topology/process-FULL', 'topology', fast_mode=True, verbose=True)
|
||||
for fast_mode in [True, False]:
|
||||
for verbose in [True, False]:
|
||||
api201 = create(None, 'tss', fast_mode=fast_mode, verbose=True)
|
||||
api_nats_tss = create(None, 'tss', fast_mode=fast_mode, verbose=True)
|
||||
print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose))
|
||||
test_api(api201, False)
|
||||
test_api(api_nats_tss, False)
|
||||
|
||||
for fast_mode in [True, False]:
|
||||
for verbose in [True, False]:
|
||||
print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose))
|
||||
api301 = create(None, 'size', fast_mode=fast_mode, verbose=True)
|
||||
print('{:} --->>> {:}'.format(time_string(), api301))
|
||||
test_api(api301, True)
|
||||
api_nats_sss = create(None, 'size', fast_mode=fast_mode, verbose=True)
|
||||
print('{:} --->>> {:}'.format(time_string(), api_nats_sss))
|
||||
test_api(api_nats_sss, True)
|
||||
|
129
exps/NATS-Bench/tss-collect-patcher.py
Normal file
129
exps/NATS-Bench/tss-collect-patcher.py
Normal file
@ -0,0 +1,129 @@
|
||||
##############################################################################
|
||||
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
||||
##############################################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
||||
##############################################################################
|
||||
# This file is used to re-orangize all checkpoints (created by main-tss.py) #
|
||||
# into a single benchmark file. Besides, for each trial, we will merge the #
|
||||
# information of all its trials into a single file. #
|
||||
# #
|
||||
# Usage: #
|
||||
# python exps/NATS-Bench/tss-collect-patcher.py #
|
||||
##############################################################################
|
||||
import os, re, sys, time, shutil, random, argparse, collections
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from pathlib import Path
|
||||
from collections import defaultdict, OrderedDict
|
||||
from typing import Dict, Any, Text, List
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from config_utils import load_config, dict2config
|
||||
from datasets import get_datasets
|
||||
from models import CellStructure, get_cell_based_tiny_net, get_search_spaces
|
||||
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
||||
from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
|
||||
from utils import get_md5_file
|
||||
from nas_201_api import NASBench201API
|
||||
|
||||
|
||||
NATS_TSS_BASE_NAME = 'NATS-tss-v1_0' # 2020.08.28
|
||||
|
||||
|
||||
def simplify(save_dir, save_name, nets, total, sup_config):
|
||||
hps, seeds = ['12', '200'], set()
|
||||
for hp in hps:
|
||||
sub_save_dir = save_dir / 'raw-data-{:}'.format(hp)
|
||||
ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth')))
|
||||
seed2names = defaultdict(list)
|
||||
for ckp in ckps:
|
||||
parts = re.split('-|\.', ckp.name)
|
||||
seed2names[parts[3]].append(ckp.name)
|
||||
print('DIR : {:}'.format(sub_save_dir))
|
||||
nums = []
|
||||
for seed, xlist in seed2names.items():
|
||||
seeds.add(seed)
|
||||
nums.append(len(xlist))
|
||||
print(' [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist)))
|
||||
assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total)
|
||||
print('{:} start simplify the checkpoint.'.format(time_string()))
|
||||
|
||||
datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120')
|
||||
|
||||
# Create the directory to save the processed data
|
||||
# full_save_dir contains all benchmark files with trained weights.
|
||||
# simplify_save_dir contains all benchmark files without trained weights.
|
||||
full_save_dir = save_dir / (save_name + '-FULL')
|
||||
simple_save_dir = save_dir / (save_name + '-SIMPLIFY')
|
||||
full_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
simple_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
# all data in memory
|
||||
arch2infos, evaluated_indexes = dict(), set()
|
||||
end_time, arch_time = time.time(), AverageMeter()
|
||||
# save the meta information
|
||||
for index in tqdm(range(total)):
|
||||
arch_str = nets[index]
|
||||
hp2info = OrderedDict()
|
||||
|
||||
simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index)
|
||||
|
||||
arch2infos[index] = pickle_load(simple_save_path)
|
||||
evaluated_indexes.add(index)
|
||||
|
||||
# measure elapsed time
|
||||
arch_time.update(time.time() - end_time)
|
||||
end_time = time.time()
|
||||
need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True))
|
||||
# print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
|
||||
print('{:} {:} done.'.format(time_string(), save_name))
|
||||
final_infos = {'meta_archs' : nets,
|
||||
'total_archs': total,
|
||||
'arch2infos' : arch2infos,
|
||||
'evaluated_indexes': evaluated_indexes}
|
||||
save_file_name = save_dir / '{:}.pickle'.format(save_name)
|
||||
pickle_save(final_infos, str(save_file_name))
|
||||
# move the benchmark file to a new path
|
||||
hd5sum = get_md5_file(str(save_file_name) + '.pbz2')
|
||||
hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_TSS_BASE_NAME, hd5sum)
|
||||
shutil.move(str(save_file_name) + '.pbz2', hd5_file_name)
|
||||
print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name))
|
||||
# move the directory to a new path
|
||||
hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_TSS_BASE_NAME, hd5sum)
|
||||
hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_TSS_BASE_NAME, hd5sum)
|
||||
shutil.move(full_save_dir, hd5_full_save_dir)
|
||||
shutil.move(simple_save_dir, hd5_simple_save_dir)
|
||||
|
||||
|
||||
def traverse_net(max_node):
|
||||
aa_nas_bench_ss = get_search_spaces('cell', 'nats-bench')
|
||||
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
|
||||
print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2)))
|
||||
|
||||
random.seed( 88 ) # please do not change this line for reproducibility
|
||||
random.shuffle( archs )
|
||||
assert archs[0 ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0])
|
||||
assert archs[9 ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9])
|
||||
assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123])
|
||||
return [x.tostr() for x in archs]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
parser = argparse.ArgumentParser(description='NATS-Bench (topology search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--base_save_dir', type=str, default='./output/NATS-Bench-topology', help='The base-name of folder to save checkpoints and log.')
|
||||
parser.add_argument('--max_node' , type=int, default=4, help='The maximum node in a cell.')
|
||||
parser.add_argument('--channel' , type=int, default=16, help='The number of channels.')
|
||||
parser.add_argument('--num_cells' , type=int, default=5, help='The number of cells in one stage.')
|
||||
parser.add_argument('--check_N' , type=int, default=15625, help='For safety.')
|
||||
parser.add_argument('--save_name' , type=str, default='process', help='The save directory.')
|
||||
args = parser.parse_args()
|
||||
|
||||
nets = traverse_net(args.max_node)
|
||||
if len(nets) != args.check_N:
|
||||
raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N))
|
||||
|
||||
save_dir = Path(args.base_save_dir)
|
||||
simplify(save_dir, args.save_name, nets, args.check_N, {'name': 'infer.tiny', 'channel': args.channel, 'num_cells': args.num_cells})
|
@ -10,7 +10,7 @@
|
||||
# Usage: #
|
||||
# python exps/NATS-Bench/tss-collect.py #
|
||||
##############################################################################
|
||||
import os, re, sys, time, random, argparse, collections
|
||||
import os, re, sys, time, shutil, random, argparse, collections
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
@ -26,6 +26,7 @@ from datasets import get_datasets
|
||||
from models import CellStructure, get_cell_based_tiny_net, get_search_spaces
|
||||
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
||||
from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
|
||||
from utils import get_md5_file
|
||||
from nas_201_api import NASBench201API
|
||||
|
||||
|
||||
|
@ -64,7 +64,7 @@ def get_search_spaces(xtype, name) -> List[Text]:
|
||||
assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys())
|
||||
return SearchSpaceNames[name]
|
||||
elif xtype == 'sss': # The size search space.
|
||||
if name == 'nas-bench-301' or name == 'nats-bench' or name == 'nats-bench-size':
|
||||
if name in ['nats-bench', 'nats-bench-size']:
|
||||
return {'candidates': [8, 16, 24, 32, 40, 48, 56, 64],
|
||||
'numbers': 5}
|
||||
else:
|
||||
|
@ -27,7 +27,6 @@ DARTS_SPACE = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5',
|
||||
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
|
||||
'nats-bench' : NAS_BENCH_201,
|
||||
'nas-bench-201': NAS_BENCH_201,
|
||||
'nas-bench-301': NAS_BENCH_201,
|
||||
'darts' : DARTS_SPACE}
|
||||
|
||||
|
||||
|
@ -1,11 +1,15 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
||||
#####################################################
|
||||
#####################################################################
|
||||
# This API will be updated after 2020.09.16. #
|
||||
# Please use our new API for NATS-Bench, which is #
|
||||
# more efficient and contains info of more architecture candidates. #
|
||||
#####################################################################
|
||||
from .api_utils import ArchResults, ResultsCount
|
||||
from .api_201 import NASBench201API
|
||||
from .api_301 import NASBench301API
|
||||
|
||||
# NAS_BENCH_201_API_VERSION="v1.1" # [2020.02.25]
|
||||
# NAS_BENCH_201_API_VERSION="v1.2" # [2020.03.09]
|
||||
# NAS_BENCH_201_API_VERSION="v1.3" # [2020.03.16]
|
||||
NAS_BENCH_201_API_VERSION="v2.0" # [2020.06.30]
|
||||
|
||||
|
@ -1,222 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
############################################################################################
|
||||
# NAS-Bench-301, coming soon.
|
||||
############################################################################################
|
||||
# The history of benchmark files:
|
||||
# [2020.06.30] NAS-Bench-301-v1_0
|
||||
#
|
||||
import os, copy, random, torch, numpy as np
|
||||
from pathlib import Path
|
||||
from typing import List, Text, Union, Dict, Optional
|
||||
from collections import OrderedDict, defaultdict
|
||||
from .api_utils import ArchResults
|
||||
from .api_utils import NASBenchMetaAPI
|
||||
from .api_utils import remap_dataset_set_names
|
||||
|
||||
|
||||
ALL_BENCHMARK_FILES = ['NAS-Bench-301-v1_0-363be7.pth']
|
||||
ALL_ARCHIVE_DIRS = ['NAS-Bench-301-v1_0-archive']
|
||||
|
||||
|
||||
def print_information(information, extra_info=None, show=False):
|
||||
dataset_names = information.get_dataset_names()
|
||||
strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)]
|
||||
def metric2str(loss, acc):
|
||||
return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc)
|
||||
|
||||
for ida, dataset in enumerate(dataset_names):
|
||||
metric = information.get_compute_costs(dataset)
|
||||
flop, param, latency = metric['flops'], metric['params'], metric['latency']
|
||||
str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None)
|
||||
train_info = information.get_metrics(dataset, 'train')
|
||||
if dataset == 'cifar10-valid':
|
||||
valid_info = information.get_metrics(dataset, 'x-valid')
|
||||
test__info = information.get_metrics(dataset, 'ori-test')
|
||||
str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(
|
||||
dataset, metric2str(train_info['loss'], train_info['accuracy']),
|
||||
metric2str(valid_info['loss'], valid_info['accuracy']),
|
||||
metric2str(test__info['loss'], test__info['accuracy']))
|
||||
elif dataset == 'cifar10':
|
||||
test__info = information.get_metrics(dataset, 'ori-test')
|
||||
str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
|
||||
else:
|
||||
valid_info = information.get_metrics(dataset, 'x-valid')
|
||||
test__info = information.get_metrics(dataset, 'x-test')
|
||||
str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
|
||||
strings += [str1, str2]
|
||||
if show: print('\n'.join(strings))
|
||||
return strings
|
||||
|
||||
|
||||
"""
|
||||
This is the class for the API of NAS-Bench-301.
|
||||
"""
|
||||
class NASBench301API(NASBenchMetaAPI):
|
||||
|
||||
""" The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """
|
||||
def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, verbose: bool=True):
|
||||
self.filename = None
|
||||
self.reset_time()
|
||||
if file_path_or_dict is None:
|
||||
file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1])
|
||||
print ('Try to use the default NAS-Bench-301 path from {:}.'.format(file_path_or_dict))
|
||||
if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
|
||||
file_path_or_dict = str(file_path_or_dict)
|
||||
if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict))
|
||||
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
|
||||
self.filename = Path(file_path_or_dict).name
|
||||
file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu')
|
||||
elif isinstance(file_path_or_dict, dict):
|
||||
file_path_or_dict = copy.deepcopy( file_path_or_dict )
|
||||
else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict)))
|
||||
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
|
||||
self.verbose = verbose # [TODO] a flag indicating whether to print more logs
|
||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
||||
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
|
||||
# This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set()
|
||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||
all_infos = file_path_or_dict['arch2infos'][xkey]
|
||||
hp2archres = OrderedDict()
|
||||
for hp_key, results in all_infos.items():
|
||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||
self._avaliable_hps.add(hp_key) # save the avaliable hyper-parameter
|
||||
self.arch2infos_dict[xkey] = hp2archres
|
||||
self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
|
||||
self.archstr2index = {}
|
||||
for idx, arch in enumerate(self.meta_archs):
|
||||
assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
|
||||
self.archstr2index[ arch ] = idx
|
||||
if self.verbose:
|
||||
print('Create NAS-Bench-301 done with {:}/{:} architectures avaliable.'.format(len(self.evaluated_indexes), len(self.meta_archs)))
|
||||
|
||||
def reload(self, archive_root: Text = None, index: int = None):
|
||||
"""Overwrite all information of the 'index'-th architecture in the search space, where the data will be loaded from 'archive_root'.
|
||||
If index is None, overwrite all ckps.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call clear_params with archive_root={:} and index={:}'.format(archive_root, index))
|
||||
if archive_root is None:
|
||||
archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1])
|
||||
assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
|
||||
if index is None:
|
||||
indexes = list(range(len(self)))
|
||||
else:
|
||||
indexes = [index]
|
||||
for idx in indexes:
|
||||
assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx)
|
||||
xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx))
|
||||
if not os.path.isfile(xfile_path):
|
||||
xfile_path = os.path.join(archive_root, '{:d}-FULL.pth'.format(idx))
|
||||
assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path)
|
||||
xdata = torch.load(xfile_path, map_location='cpu')
|
||||
assert isinstance(xdata, dict), 'invalid format of data in {:}'.format(xfile_path)
|
||||
|
||||
hp2archres = OrderedDict()
|
||||
for hp_key, results in xdata.items():
|
||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||
self.arch2infos_dict[idx] = hp2archres
|
||||
|
||||
def query_info_str_by_arch(self, arch, hp: Text='12'):
|
||||
""" This function is used to query the information of a specific architecture
|
||||
'arch' can be an architecture index or an architecture string
|
||||
When hp=01, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/01E.config'
|
||||
When hp=12, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/12E.config'
|
||||
When hp=90, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/90E.config'
|
||||
The difference between these three configurations are the number of training epochs.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp))
|
||||
return self._query_info_str_by_arch(arch, hp, print_information)
|
||||
|
||||
def get_more_info(self, index, dataset: Text, iepoch=None, hp='12', is_random=True):
|
||||
"""This function will return the metric for the `index`-th architecture
|
||||
`dataset` indicates the dataset:
|
||||
'cifar10-valid' : using the proposed train set of CIFAR-10 as the training set
|
||||
'cifar10' : using the proposed train+valid set of CIFAR-10 as the training set
|
||||
'cifar100' : using the proposed train set of CIFAR-100 as the training set
|
||||
'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set
|
||||
`iepoch` indicates the index of training epochs from 0 to 11/199.
|
||||
When iepoch=None, it will return the metric for the last training epoch
|
||||
When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0)
|
||||
`hp` indicates different hyper-parameters for training
|
||||
When hp=01, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 01 epochs
|
||||
When hp=12, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 12 epochs
|
||||
When hp=90, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 90 epochs
|
||||
`is_random`
|
||||
When is_random=True, the performance of a random architecture will be returned
|
||||
When is_random=False, the performanceo of all trials will be averaged.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
|
||||
index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object
|
||||
if index not in self.arch2infos_dict:
|
||||
raise ValueError('Did not find {:} from arch2infos_dict.'.format(index))
|
||||
archresult = self.arch2infos_dict[index][str(hp)]
|
||||
# if randomly select one trial, select the seed at first
|
||||
if isinstance(is_random, bool) and is_random:
|
||||
seeds = archresult.get_dataset_seeds(dataset)
|
||||
is_random = random.choice(seeds)
|
||||
# collect the training information
|
||||
train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random)
|
||||
total = train_info['iepoch'] + 1
|
||||
xinfo = {'train-loss' : train_info['loss'],
|
||||
'train-accuracy': train_info['accuracy'],
|
||||
'train-per-time': train_info['all_time'] / total,
|
||||
'train-all-time': train_info['all_time']}
|
||||
# collect the evaluation information
|
||||
if dataset == 'cifar10-valid':
|
||||
valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
||||
try:
|
||||
test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
||||
except:
|
||||
test_info = None
|
||||
valtest_info = None
|
||||
else:
|
||||
try: # collect results on the proposed test set
|
||||
if dataset == 'cifar10':
|
||||
test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
||||
else:
|
||||
test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
|
||||
except:
|
||||
test_info = None
|
||||
try: # collect results on the proposed validation set
|
||||
valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
|
||||
except:
|
||||
valid_info = None
|
||||
try:
|
||||
if dataset != 'cifar10':
|
||||
valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
|
||||
else:
|
||||
valtest_info = None
|
||||
except:
|
||||
valtest_info = None
|
||||
if valid_info is not None:
|
||||
xinfo['valid-loss'] = valid_info['loss']
|
||||
xinfo['valid-accuracy'] = valid_info['accuracy']
|
||||
xinfo['valid-per-time'] = valid_info['all_time'] / total
|
||||
xinfo['valid-all-time'] = valid_info['all_time']
|
||||
if test_info is not None:
|
||||
xinfo['test-loss'] = test_info['loss']
|
||||
xinfo['test-accuracy'] = test_info['accuracy']
|
||||
xinfo['test-per-time'] = test_info['all_time'] / total
|
||||
xinfo['test-all-time'] = test_info['all_time']
|
||||
if valtest_info is not None:
|
||||
xinfo['valtest-loss'] = valtest_info['loss']
|
||||
xinfo['valtest-accuracy'] = valtest_info['accuracy']
|
||||
xinfo['valtest-per-time'] = valtest_info['all_time'] / total
|
||||
xinfo['valtest-all-time'] = valtest_info['all_time']
|
||||
return xinfo
|
||||
|
||||
def show(self, index: int = -1) -> None:
|
||||
"""
|
||||
This function will print the information of a specific (or all) architecture(s).
|
||||
|
||||
:param index: If the index < 0: it will loop for all architectures and print their information one by one.
|
||||
else: it will print the information of the 'index'-th architecture.
|
||||
:return: nothing
|
||||
"""
|
||||
self._show(index, print_information)
|
@ -716,7 +716,7 @@ class ResultsCount(object):
|
||||
def get_config(self, str2structure):
|
||||
"""This function is used to obtain the config dict for this architecture."""
|
||||
if str2structure is None:
|
||||
# In this case, this is NAS-Bench-301
|
||||
# In this case, this is to handle the size search space.
|
||||
if 'name' in self.arch_config and self.arch_config['name'] == 'infer.shape.tiny':
|
||||
return {'name': 'infer.shape.tiny', 'channels': self.arch_config['channels'],
|
||||
'genotype': self.arch_config['genotype'], 'num_classes': self.arch_config['class_num']}
|
||||
@ -726,7 +726,7 @@ class ResultsCount(object):
|
||||
'N' : self.arch_config['num_cells'],
|
||||
'arch_str': self.arch_config['arch_str'], 'num_classes': self.arch_config['class_num']}
|
||||
else:
|
||||
# In this case, this is NAS-Bench-301
|
||||
# In this case, this is to handle the size search space.
|
||||
if 'name' in self.arch_config and self.arch_config['name'] == 'infer.shape.tiny':
|
||||
return {'name': 'infer.shape.tiny', 'channels': self.arch_config['channels'],
|
||||
'genotype': str2structure(self.arch_config['genotype']), 'num_classes': self.arch_config['class_num']}
|
||||
|
@ -68,7 +68,7 @@ class NATSsize(NASBenchMetaAPI):
|
||||
self._archive_dir = os.path.join(os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1]))
|
||||
else:
|
||||
file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], '{:}.{:}'.format(ALL_BASE_NAMES[-1], PICKLE_EXT))
|
||||
print ('Try to use the default NATS-Bench (size) path from fast_mode={:} and path={:}.'.format(self._fast_mode, file_path_or_dict))
|
||||
print ('{:} Try to use the default NATS-Bench (size) path from fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, file_path_or_dict))
|
||||
if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
|
||||
file_path_or_dict = str(file_path_or_dict)
|
||||
if verbose:
|
||||
@ -125,10 +125,15 @@ class NATSsize(NASBenchMetaAPI):
|
||||
If index is None, overwrite all ckps.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('{:} Call clear_params with archive_root={:} and index={:}'.format(time_string(), archive_root, index))
|
||||
print('{:} Call clear_params with archive_root={:} and index={:}'.format(
|
||||
time_string(), archive_root, index))
|
||||
if archive_root is None:
|
||||
archive_root = os.path.join(os.environ['TORCH_HOME'], '{:}-full'.format(ALL_BASE_NAMES[-1]))
|
||||
assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
|
||||
if not os.path.isdir(archive_root):
|
||||
warnings.warn('The input archive_root is None and the default archive_root path ({:}) does not exist, try to use self.archive_dir.'.format(archive_root))
|
||||
archive_root = self.archive_dir
|
||||
if archive_root is None or not os.path.isdir(archive_root):
|
||||
raise ValueError('Invalid archive_root : {:}'.format(archive_root))
|
||||
if index is None:
|
||||
indexes = list(range(len(self)))
|
||||
else:
|
||||
|
@ -4,7 +4,7 @@
|
||||
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
||||
#####################################################################################
|
||||
# The history of benchmark files (the name is NATS-tss-[version]-[md5].pickle.pbz2) #
|
||||
# [2020.08.31] #
|
||||
# [2020.08.31] NATS-tss-v1_0-3ffb9.pickle.pbz2 #
|
||||
#####################################################################################
|
||||
import os, copy, random, numpy as np
|
||||
from pathlib import Path
|
||||
@ -19,14 +19,14 @@ from .api_utils import remap_dataset_set_names
|
||||
|
||||
|
||||
PICKLE_EXT = 'pickle.pbz2'
|
||||
ALL_BASE_NAMES = ['NATS-tss-v1_0-xxxxx']
|
||||
ALL_BASE_NAMES = ['NATS-tss-v1_0-3ffb9']
|
||||
|
||||
|
||||
def print_information(information, extra_info=None, show=False):
|
||||
dataset_names = information.get_dataset_names()
|
||||
strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)]
|
||||
def metric2str(loss, acc):
|
||||
return 'loss = {:.3f}, top1 = {:.2f}%'.format(loss, acc)
|
||||
return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc)
|
||||
|
||||
for ida, dataset in enumerate(dataset_names):
|
||||
metric = information.get_compute_costs(dataset)
|
||||
@ -61,12 +61,15 @@ class NATStopology(NASBenchMetaAPI):
|
||||
self._archive_dir = None
|
||||
self.reset_time()
|
||||
if file_path_or_dict is None:
|
||||
file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1])
|
||||
if self._fast_mode:
|
||||
self._archive_dir = os.path.join(os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1]))
|
||||
else:
|
||||
file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], '{:}.{:}'.format(ALL_BASE_NAMES[-1], PICKLE_EXT))
|
||||
print ('{:} Try to use the default NATS-Bench (topology) path from {:}.'.format(time_string(), file_path_or_dict))
|
||||
if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
|
||||
file_path_or_dict = str(file_path_or_dict)
|
||||
if verbose:
|
||||
print('{:} Try to create the NATS-Bench (topology) api from {:}'.format(time_string(), file_path_or_dict))
|
||||
print('{:} Try to create the NATS-Bench (topology) api from {:} with fast_mode={:}'.format(time_string(), file_path_or_dict, fast_mode))
|
||||
if not os.path.isfile(file_path_or_dict) and not os.path.isdir(file_path_or_dict):
|
||||
raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict))
|
||||
self.filename = Path(file_path_or_dict).name
|
||||
@ -82,7 +85,7 @@ class NATStopology(NASBenchMetaAPI):
|
||||
file_path_or_dict = pickle_load(file_path_or_dict)
|
||||
elif isinstance(file_path_or_dict, dict):
|
||||
file_path_or_dict = copy.deepcopy(file_path_or_dict)
|
||||
self.verbose = verbose # [TODO] a flag indicating whether to print more logs
|
||||
self.verbose = verbose
|
||||
if isinstance(file_path_or_dict, dict):
|
||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
||||
@ -91,13 +94,13 @@ class NATStopology(NASBenchMetaAPI):
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set()
|
||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||
all_info = file_path_or_dict['arch2infos'][xkey]
|
||||
all_infos = file_path_or_dict['arch2infos'][xkey]
|
||||
hp2archres = OrderedDict()
|
||||
for hp_key, results in all_infos.items():
|
||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||
self._avaliable_hps.add(hp_key) # save the avaliable hyper-parameter
|
||||
self.arch2infos_dict[xkey] = hp2archres
|
||||
self.evaluated_indexes = list(file_path_or_dict['evaluated_indexes'])
|
||||
self.evaluated_indexes = set(file_path_or_dict['evaluated_indexes'])
|
||||
elif self.archive_dir is not None:
|
||||
benchmark_meta = pickle_load('{:}/meta.{:}'.format(self.archive_dir, PICKLE_EXT))
|
||||
self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs'])
|
||||
@ -116,7 +119,7 @@ class NATStopology(NASBenchMetaAPI):
|
||||
|
||||
def reload(self, archive_root: Text = None, index: int = None):
|
||||
"""Overwrite all information of the 'index'-th architecture in the search space.
|
||||
It will load its data from 'archive_root'.
|
||||
If index is None, overwrite all ckps.
|
||||
"""
|
||||
if self.verbose:
|
||||
print('{:} Call clear_params with archive_root={:} and index={:}'.format(
|
||||
|
Loading…
Reference in New Issue
Block a user