update GDAS and SETN
This commit is contained in:
		
							
								
								
									
										16
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										16
									
								
								README.md
									
									
									
									
									
								
							| @@ -65,7 +65,10 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 SETN 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN  256 -1 | ||||
| ``` | ||||
|  | ||||
| Searching codes come soon! | ||||
| The searching codes of SETN on a small search space: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
|  | ||||
| ## [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465) | ||||
| @@ -88,7 +91,16 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1 | ||||
| ``` | ||||
|  | ||||
| Searching codes come soon! A small example forward code segment for searching can be found in [this issue](https://github.com/D-X-Y/NAS-Projects/issues/12). | ||||
| The GDAS searching codes on a small search space: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
| The baseline searching codes are DARTS: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
|  | ||||
| ## [Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification](https://arxiv.org/abs/1903.09776) | ||||
|   | ||||
							
								
								
									
										13
									
								
								configs/nas-benchmark/CIFAR.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/nas-benchmark/CIFAR.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "eta_min"  : ["float", "0.0"], | ||||
|   "epochs"   : ["int",   "200"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "LR"       : ["float", "0.1"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int", "256"] | ||||
| } | ||||
							
								
								
									
										13
									
								
								configs/nas-benchmark/ImageNet-16.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/nas-benchmark/ImageNet-16.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "eta_min"  : ["float", "0.0"], | ||||
|   "epochs"   : ["int",   "200"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "LR"       : ["float", "0.1"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int", "256"] | ||||
| } | ||||
							
								
								
									
										4
									
								
								configs/nas-benchmark/ImageNet16-120-split.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								configs/nas-benchmark/ImageNet16-120-split.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										13
									
								
								configs/nas-benchmark/algos/DARTS.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/nas-benchmark/algos/DARTS.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "eta_min"  : ["float", "0.001"], | ||||
|   "epochs"   : ["int",   "50"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "LR"       : ["float", "0.025"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int",  "64"] | ||||
| } | ||||
							
								
								
									
										13
									
								
								configs/nas-benchmark/algos/GDAS-noacc.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/nas-benchmark/algos/GDAS-noacc.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "eta_min"  : ["float", "0.001"], | ||||
|   "epochs"   : ["int",   "50"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "LR"       : ["float", "0.025"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int",  "64"] | ||||
| } | ||||
							
								
								
									
										13
									
								
								configs/nas-benchmark/algos/GDAS.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/nas-benchmark/algos/GDAS.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "eta_min"  : ["float", "0.001"], | ||||
|   "epochs"   : ["int",   "240"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "LR"       : ["float", "0.025"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int",  "64"] | ||||
| } | ||||
							
								
								
									
										13
									
								
								configs/nas-benchmark/algos/R-EA.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/nas-benchmark/algos/R-EA.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "eta_min"  : ["float", "0.001"], | ||||
|   "epochs"   : ["int",   "25"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "LR"       : ["float", "0.025"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int",  "64"] | ||||
| } | ||||
							
								
								
									
										13
									
								
								configs/nas-benchmark/algos/RANDOM.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/nas-benchmark/algos/RANDOM.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "eta_min"  : ["float", "0.001"], | ||||
|   "epochs"   : ["int",   "150"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "LR"       : ["float", "0.025"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int",  "64"] | ||||
| } | ||||
							
								
								
									
										13
									
								
								configs/nas-benchmark/algos/SETN.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								configs/nas-benchmark/algos/SETN.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "eta_min"  : ["float", "0.001"], | ||||
|   "epochs"   : ["int",   "400"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "LR"       : ["float", "0.025"], | ||||
|   "decay"    : ["float", "0.0005"], | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int",  "64"] | ||||
| } | ||||
							
								
								
									
										4
									
								
								configs/nas-benchmark/cifar-split.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								configs/nas-benchmark/cifar-split.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										4
									
								
								configs/nas-benchmark/cifar100-test-split.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								configs/nas-benchmark/cifar100-test-split.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										4
									
								
								configs/nas-benchmark/imagenet-16-120-test-split.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								configs/nas-benchmark/imagenet-16-120-test-split.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										252
									
								
								exps/algos/DARTS-V1.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										252
									
								
								exps/algos/DARTS-V1.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,252 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||
|     scheduler.update(None, 1.0 * step / len(xloader)) | ||||
|     base_targets = base_targets.cuda(non_blocking=True) | ||||
|     arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|     # measure data loading time | ||||
|     data_time.update(time.time() - end) | ||||
|      | ||||
|     # update the weights | ||||
|     w_optimizer.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     torch.nn.utils.clip_grad_norm_(network.parameters(), 5) | ||||
|     w_optimizer.step() | ||||
|     # record | ||||
|     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) | ||||
|     base_losses.update(base_loss.item(),  base_inputs.size(0)) | ||||
|     base_top1.update  (base_prec1.item(), base_inputs.size(0)) | ||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     a_optimizer.zero_grad() | ||||
|     _, logits = network(arch_inputs) | ||||
|     arch_loss = criterion(logits, arch_targets) | ||||
|     arch_loss.backward() | ||||
|     a_optimizer.step() | ||||
|     # record | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|  | ||||
|     # measure elapsed time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|  | ||||
|     if step % print_freq == 0 or step + 1 == len(xloader): | ||||
|       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg | ||||
|  | ||||
|  | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.eval() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|       # measure elapsed time | ||||
|       batch_time.update(time.time() - end) | ||||
|       end = time.time() | ||||
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|     cifar_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   elif xargs.dataset.startswith('ImageNet16'): | ||||
|     split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) | ||||
|     imagenet16_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = imagenet16_split.train, imagenet16_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/DARTS.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
|   logger.log('w-optimizer : {:}'.format(w_optimizer)) | ||||
|   logger.log('a-optimizer : {:}'.format(a_optimizer)) | ||||
|   logger.log('w-scheduler : {:}'.format(w_scheduler)) | ||||
|   logger.log('criterion   : {:}'.format(criterion)) | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
|  | ||||
|   if last_info.exists(): # automatically resume from previous checkpoint | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | ||||
|     last_info   = torch.load(last_info) | ||||
|     start_epoch = last_info['epoch'] | ||||
|     checkpoint  = torch.load(last_info['last_checkpoint']) | ||||
|     genotypes   = checkpoint['genotypes'] | ||||
|     valid_accuracies = checkpoint['valid_accuracies'] | ||||
|     search_model.load_state_dict( checkpoint['search_model'] ) | ||||
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | ||||
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | ||||
|     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | ||||
|   else: | ||||
|     logger.log("=> do not find the last-info file : {:}".format(last_info)) | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     # check the best accuracy | ||||
|     valid_accuracies[epoch] = valid_a_top1 | ||||
|     if valid_a_top1 > valid_accuracies['best']: | ||||
|       valid_accuracies['best'] = valid_a_top1 | ||||
|       genotypes['best']        = search_model.genotype() | ||||
|       find_best = True | ||||
|     else: find_best = False | ||||
|  | ||||
|     genotypes[epoch] = search_model.genotype() | ||||
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | ||||
|     # save checkpoint | ||||
|     save_path = save_checkpoint({'epoch' : epoch + 1, | ||||
|                 'args'  : deepcopy(xargs), | ||||
|                 'search_model': search_model.state_dict(), | ||||
|                 'w_optimizer' : w_optimizer.state_dict(), | ||||
|                 'a_optimizer' : a_optimizer.state_dict(), | ||||
|                 'w_scheduler' : w_scheduler.state_dict(), | ||||
|                 'genotypes'   : genotypes, | ||||
|                 'valid_accuracies' : valid_accuracies}, | ||||
|                 model_base_path, logger) | ||||
|     last_info = save_checkpoint({ | ||||
|           'epoch': epoch + 1, | ||||
|           'args' : deepcopy(args), | ||||
|           'last_checkpoint': save_path, | ||||
|           }, logger.path('info'), logger) | ||||
|     if find_best: | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   #if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|   #  logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   #else: | ||||
|   #  nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|   #  geno = genotypes[total_epoch-1] | ||||
|   #  logger.log('The last model is {:}'.format(geno)) | ||||
|   #  info = nas_bench.query_by_arch( geno ) | ||||
|   #  if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|   #  else           : logger.log('{:}'.format(info)) | ||||
|   #  logger.log('-'*100) | ||||
|   #  geno = genotypes['best'] | ||||
|   #  logger.log('The best model is {:}'.format(geno)) | ||||
|   #  info = nas_bench.query_by_arch( geno ) | ||||
|   #  if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|   #  else           : logger.log('{:}'.format(info)) | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("DARTS first order") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
							
								
								
									
										319
									
								
								exps/algos/DARTS-V2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										319
									
								
								exps/algos/DARTS-V2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,319 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
|  | ||||
|  | ||||
| def _concat(xs): | ||||
|   return torch.cat([x.view(-1) for x in xs]) | ||||
|  | ||||
|  | ||||
| def _hessian_vector_product(vector, network, criterion, base_inputs, base_targets, r=1e-2): | ||||
|   R = r / _concat(vector).norm() | ||||
|   for p, v in zip(network.module.get_weights(), vector): | ||||
|     p.data.add_(R, v) | ||||
|   _, logits = network(base_inputs) | ||||
|   loss = criterion(logits, base_targets) | ||||
|   grads_p = torch.autograd.grad(loss, network.module.get_alphas()) | ||||
|  | ||||
|   for p, v in zip(network.module.get_weights(), vector): | ||||
|     p.data.sub_(2*R, v) | ||||
|   _, logits = network(base_inputs) | ||||
|   loss = criterion(logits, base_targets) | ||||
|   grads_n = torch.autograd.grad(loss, network.module.get_alphas()) | ||||
|  | ||||
|   for p, v in zip(network.module.get_weights(), vector): | ||||
|     p.data.add_(R, v) | ||||
|   return [(x-y).div_(2*R) for x, y in zip(grads_p, grads_n)] | ||||
|  | ||||
|  | ||||
| def backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets): | ||||
|   # _compute_unrolled_model | ||||
|   _, logits = network(base_inputs) | ||||
|   loss = criterion(logits, base_targets) | ||||
|   LR, WD, momentum = w_optimizer.param_groups[0]['lr'], w_optimizer.param_groups[0]['weight_decay'], w_optimizer.param_groups[0]['momentum'] | ||||
|   with torch.no_grad(): | ||||
|     theta = _concat(network.module.get_weights()) | ||||
|     try: | ||||
|       moment = _concat(w_optimizer.state[v]['momentum_buffer'] for v in network.module.get_weights()) | ||||
|       moment = moment.mul_(momentum) | ||||
|     except: | ||||
|       moment = torch.zeros_like(theta) | ||||
|     dtheta = _concat(torch.autograd.grad(loss, network.module.get_weights())) + WD*theta | ||||
|     params = theta.sub(LR, moment+dtheta) | ||||
|   unrolled_model = deepcopy(network) | ||||
|   model_dict  = unrolled_model.state_dict() | ||||
|   new_params, offset = {}, 0 | ||||
|   for k, v in network.named_parameters(): | ||||
|     if 'arch_parameters' in k: continue | ||||
|     v_length = np.prod(v.size()) | ||||
|     new_params[k] = params[offset: offset+v_length].view(v.size()) | ||||
|     offset += v_length | ||||
|   model_dict.update(new_params) | ||||
|   unrolled_model.load_state_dict(model_dict) | ||||
|  | ||||
|   unrolled_model.zero_grad() | ||||
|   _, unrolled_logits = unrolled_model(arch_inputs) | ||||
|   unrolled_loss = criterion(unrolled_logits, arch_targets) | ||||
|   unrolled_loss.backward() | ||||
|  | ||||
|   dalpha = unrolled_model.module.arch_parameters.grad | ||||
|   vector = [v.grad.data for v in unrolled_model.module.get_weights()] | ||||
|   [implicit_grads] = _hessian_vector_product(vector, network, criterion, base_inputs, base_targets) | ||||
|    | ||||
|   dalpha.data.sub_(LR, implicit_grads.data) | ||||
|  | ||||
|   if network.module.arch_parameters.grad is None: | ||||
|     network.module.arch_parameters.grad = deepcopy( dalpha ) | ||||
|   else: | ||||
|     network.module.arch_parameters.grad.data.copy_( dalpha.data ) | ||||
|   return unrolled_loss.detach(), unrolled_logits.detach() | ||||
|    | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||
|     scheduler.update(None, 1.0 * step / len(xloader)) | ||||
|     base_targets = base_targets.cuda(non_blocking=True) | ||||
|     arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|     # measure data loading time | ||||
|     data_time.update(time.time() - end) | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     a_optimizer.zero_grad() | ||||
|     arch_loss, arch_logits = backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets) | ||||
|     a_optimizer.step() | ||||
|     # record | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(arch_logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|      | ||||
|     # update the weights | ||||
|     w_optimizer.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     torch.nn.utils.clip_grad_norm_(network.parameters(), 5) | ||||
|     w_optimizer.step() | ||||
|     # record | ||||
|     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) | ||||
|     base_losses.update(base_loss.item(),  base_inputs.size(0)) | ||||
|     base_top1.update  (base_prec1.item(), base_inputs.size(0)) | ||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||
|  | ||||
|     # measure elapsed time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|  | ||||
|     if step % print_freq == 0 or step + 1 == len(xloader): | ||||
|       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg | ||||
|  | ||||
|  | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.eval() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|       # measure elapsed time | ||||
|       batch_time.update(time.time() - end) | ||||
|       end = time.time() | ||||
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|     cifar_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   elif xargs.dataset.startswith('ImageNet16'): | ||||
|     split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) | ||||
|     imagenet16_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = imagenet16_split.train, imagenet16_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/DARTS.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'DARTS-V2', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
|   logger.log('w-optimizer : {:}'.format(w_optimizer)) | ||||
|   logger.log('a-optimizer : {:}'.format(a_optimizer)) | ||||
|   logger.log('w-scheduler : {:}'.format(w_scheduler)) | ||||
|   logger.log('criterion   : {:}'.format(criterion)) | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
|  | ||||
|   if last_info.exists(): # automatically resume from previous checkpoint | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | ||||
|     last_info   = torch.load(last_info) | ||||
|     start_epoch = last_info['epoch'] | ||||
|     checkpoint  = torch.load(last_info['last_checkpoint']) | ||||
|     genotypes   = checkpoint['genotypes'] | ||||
|     valid_accuracies = checkpoint['valid_accuracies'] | ||||
|     search_model.load_state_dict( checkpoint['search_model'] ) | ||||
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | ||||
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | ||||
|     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | ||||
|   else: | ||||
|     logger.log("=> do not find the last-info file : {:}".format(last_info)) | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     min_LR    = min(w_scheduler.get_lr()) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min_LR)) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     # check the best accuracy | ||||
|     valid_accuracies[epoch] = valid_a_top1 | ||||
|     if valid_a_top1 > valid_accuracies['best']: | ||||
|       valid_accuracies['best'] = valid_a_top1 | ||||
|       genotypes['best']        = search_model.genotype() | ||||
|       find_best = True | ||||
|     else: find_best = False | ||||
|  | ||||
|     genotypes[epoch] = search_model.genotype() | ||||
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | ||||
|     # save checkpoint | ||||
|     save_path = save_checkpoint({'epoch' : epoch + 1, | ||||
|                 'args'  : deepcopy(xargs), | ||||
|                 'search_model': search_model.state_dict(), | ||||
|                 'w_optimizer' : w_optimizer.state_dict(), | ||||
|                 'a_optimizer' : a_optimizer.state_dict(), | ||||
|                 'w_scheduler' : w_scheduler.state_dict(), | ||||
|                 'genotypes'   : genotypes, | ||||
|                 'valid_accuracies' : valid_accuracies}, | ||||
|                 model_base_path, logger) | ||||
|     last_info = save_checkpoint({ | ||||
|           'epoch': epoch + 1, | ||||
|           'args' : deepcopy(args), | ||||
|           'last_checkpoint': save_path, | ||||
|           }, logger.path('info'), logger) | ||||
|     if find_best: | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   """ | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   else: | ||||
|     nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|     geno = genotypes[total_epoch-1] | ||||
|     logger.log('The last model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|     logger.log('-'*100) | ||||
|     geno = genotypes['best'] | ||||
|     logger.log('The best model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|   """ | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("DARTS Second Order") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
							
								
								
									
										224
									
								
								exps/algos/GDAS.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										224
									
								
								exps/algos/GDAS.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,224 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||
|     scheduler.update(None, 1.0 * step / len(xloader)) | ||||
|     base_targets = base_targets.cuda(non_blocking=True) | ||||
|     arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|     # measure data loading time | ||||
|     data_time.update(time.time() - end) | ||||
|      | ||||
|     # update the weights | ||||
|     w_optimizer.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     torch.nn.utils.clip_grad_norm_(network.parameters(), 5) | ||||
|     w_optimizer.step() | ||||
|     # record | ||||
|     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) | ||||
|     base_losses.update(base_loss.item(),  base_inputs.size(0)) | ||||
|     base_top1.update  (base_prec1.item(), base_inputs.size(0)) | ||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     a_optimizer.zero_grad() | ||||
|     _, logits = network(arch_inputs) | ||||
|     arch_loss = criterion(logits, arch_targets) | ||||
|     arch_loss.backward() | ||||
|     a_optimizer.step() | ||||
|     # record | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|  | ||||
|     # measure elapsed time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|  | ||||
|     if step % print_freq == 0 or step + 1 == len(xloader): | ||||
|       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   train_data, _, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|     cifar_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   elif xargs.dataset.startswith('ImageNet16'): | ||||
|     split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) | ||||
|     imagenet16_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = imagenet16_split.train, imagenet16_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/GDAS.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
|   logger.log('w-optimizer : {:}'.format(w_optimizer)) | ||||
|   logger.log('a-optimizer : {:}'.format(a_optimizer)) | ||||
|   logger.log('w-scheduler : {:}'.format(w_scheduler)) | ||||
|   logger.log('criterion   : {:}'.format(criterion)) | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|   logger.log('search_space : {:}'.format(search_space)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
|  | ||||
|   if last_info.exists(): # automatically resume from previous checkpoint | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | ||||
|     last_info   = torch.load(last_info) | ||||
|     start_epoch = last_info['epoch'] | ||||
|     checkpoint  = torch.load(last_info['last_checkpoint']) | ||||
|     genotypes   = checkpoint['genotypes'] | ||||
|     valid_accuracies = checkpoint['valid_accuracies'] | ||||
|     search_model.load_state_dict( checkpoint['search_model'] ) | ||||
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | ||||
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | ||||
|     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | ||||
|   else: | ||||
|     logger.log("=> do not find the last-info file : {:}".format(last_info)) | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     search_model.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) ) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, tau={:}, LR={:}'.format(epoch_str, need_time, search_model.get_tau(), min(w_scheduler.get_lr()))) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5 \ | ||||
|               = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss , valid_a_top1 , valid_a_top5 )) | ||||
|     # check the best accuracy | ||||
|     valid_accuracies[epoch] = valid_a_top1 | ||||
|     if valid_a_top1 > valid_accuracies['best']: | ||||
|       valid_accuracies['best'] = valid_a_top1 | ||||
|       genotypes['best']        = search_model.genotype() | ||||
|       find_best = True | ||||
|     else: find_best = False | ||||
|  | ||||
|     genotypes[epoch] = search_model.genotype() | ||||
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | ||||
|     # save checkpoint | ||||
|     save_path = save_checkpoint({'epoch' : epoch + 1, | ||||
|                 'args'  : deepcopy(xargs), | ||||
|                 'search_model': search_model.state_dict(), | ||||
|                 'w_optimizer' : w_optimizer.state_dict(), | ||||
|                 'a_optimizer' : a_optimizer.state_dict(), | ||||
|                 'w_scheduler' : w_scheduler.state_dict(), | ||||
|                 'genotypes'   : genotypes, | ||||
|                 'valid_accuracies' : valid_accuracies}, | ||||
|                 model_base_path, logger) | ||||
|     last_info = save_checkpoint({ | ||||
|           'epoch': epoch + 1, | ||||
|           'args' : deepcopy(args), | ||||
|           'last_checkpoint': save_path, | ||||
|           }, logger.path('info'), logger) | ||||
|     if find_best: | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   """ | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   else: | ||||
|     nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|     geno = genotypes[total_epoch-1] | ||||
|     logger.log('The last model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|     logger.log('-'*100) | ||||
|   """ | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("GDAS") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   parser.add_argument('--tau_min',            type=float,               help='The minimum tau for Gumbel') | ||||
|   parser.add_argument('--tau_max',            type=float,               help='The maximum tau for Gumbel') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
							
								
								
									
										281
									
								
								exps/algos/SETN.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										281
									
								
								exps/algos/SETN.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,281 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||
|     scheduler.update(None, 1.0 * step / len(xloader)) | ||||
|     base_targets = base_targets.cuda(non_blocking=True) | ||||
|     arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|     # measure data loading time | ||||
|     data_time.update(time.time() - end) | ||||
|      | ||||
|     # update the weights | ||||
|     network.module.set_cal_mode( 'urs' ) | ||||
|     w_optimizer.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     w_optimizer.step() | ||||
|     # record | ||||
|     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5)) | ||||
|     base_losses.update(base_loss.item(),  base_inputs.size(0)) | ||||
|     base_top1.update  (base_prec1.item(), base_inputs.size(0)) | ||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     network.module.set_cal_mode( 'joint' ) | ||||
|     a_optimizer.zero_grad() | ||||
|     _, logits = network(arch_inputs) | ||||
|     arch_loss = criterion(logits, arch_targets) | ||||
|     arch_loss.backward() | ||||
|     a_optimizer.step() | ||||
|     # record | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|     arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|     arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|  | ||||
|     # measure elapsed time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|  | ||||
|     if step % print_freq == 0 or step + 1 == len(xloader): | ||||
|       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader)) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg | ||||
|  | ||||
|  | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|       # measure elapsed time | ||||
|       batch_time.update(time.time() - end) | ||||
|       end = time.time() | ||||
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|     cifar_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   elif xargs.dataset.startswith('ImageNet16'): | ||||
|     split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) | ||||
|     imagenet16_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = imagenet16_split.train, imagenet16_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/SETN.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'SETN', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
|   logger.log('w-optimizer : {:}'.format(w_optimizer)) | ||||
|   logger.log('a-optimizer : {:}'.format(a_optimizer)) | ||||
|   logger.log('w-scheduler : {:}'.format(w_scheduler)) | ||||
|   logger.log('criterion   : {:}'.format(criterion)) | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
|  | ||||
|   if last_info.exists(): # automatically resume from previous checkpoint | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) | ||||
|     last_info   = torch.load(last_info) | ||||
|     start_epoch = last_info['epoch'] | ||||
|     checkpoint  = torch.load(last_info['last_checkpoint']) | ||||
|     genotypes   = checkpoint['genotypes'] | ||||
|     valid_accuracies = checkpoint['valid_accuracies'] | ||||
|     search_model.load_state_dict( checkpoint['search_model'] ) | ||||
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) | ||||
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) | ||||
|     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) | ||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | ||||
|   else: | ||||
|     logger.log("=> do not find the last-info file : {:}".format(last_info)) | ||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} | ||||
|  | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   for epoch in range(start_epoch, total_epoch): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     search_model.set_cal_mode('urs') | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     search_model.set_cal_mode('joint') | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     search_model.set_cal_mode('select') | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     # check the best accuracy | ||||
|     valid_accuracies[epoch] = valid_a_top1 | ||||
|     if valid_a_top1 > valid_accuracies['best']: | ||||
|       valid_accuracies['best'] = valid_a_top1 | ||||
|       genotypes['best']        = search_model.genotype() | ||||
|       find_best = True | ||||
|     else: find_best = False | ||||
|  | ||||
|     genotypes[epoch] = search_model.genotype() | ||||
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | ||||
|     # save checkpoint | ||||
|     save_path = save_checkpoint({'epoch' : epoch + 1, | ||||
|                 'args'  : deepcopy(xargs), | ||||
|                 'search_model': search_model.state_dict(), | ||||
|                 'w_optimizer' : w_optimizer.state_dict(), | ||||
|                 'a_optimizer' : a_optimizer.state_dict(), | ||||
|                 'w_scheduler' : w_scheduler.state_dict(), | ||||
|                 'genotypes'   : genotypes, | ||||
|                 'valid_accuracies' : valid_accuracies}, | ||||
|                 model_base_path, logger) | ||||
|     last_info = save_checkpoint({ | ||||
|           'epoch': epoch + 1, | ||||
|           'args' : deepcopy(args), | ||||
|           'last_checkpoint': save_path, | ||||
|           }, logger.path('info'), logger) | ||||
|     if find_best: | ||||
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) | ||||
|       copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|     with torch.no_grad(): | ||||
|       logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|  | ||||
|   # sampling | ||||
|   with torch.no_grad(): | ||||
|     logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|   selected_archs = set() | ||||
|   while len(selected_archs) < xargs.select_num: | ||||
|     architecture = search_model.dync_genotype() | ||||
|     selected_archs.add( architecture ) | ||||
|   logger.log('select {:} architectures based on the learned arch-parameters'.format( len(selected_archs) )) | ||||
|  | ||||
|   best_arch, best_acc = None, -1 | ||||
|   state_dict = deepcopy( network.state_dict() ) | ||||
|   for index, arch in enumerate(selected_archs): | ||||
|     with torch.no_grad(): | ||||
|       search_model.set_cal_mode('dynamic', arch) | ||||
|       network.load_state_dict( deepcopy(state_dict) ) | ||||
|       valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('{:} [{:03d}/{:03d}] : {:125s}, loss={:.3f}, accuracy={:.3f}%'.format(time_string(), index, len(selected_archs), str(arch), valid_a_loss , valid_a_top1)) | ||||
|     if best_arch is None or best_acc < valid_a_top1: | ||||
|       best_arch, best_acc = arch, valid_a_top1 | ||||
|   logger.log('Find the best one : {:} with accuracy={:.2f}%'.format(best_arch, best_acc)) | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
|   """ | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   else: | ||||
|     nas_bench = TinyNASBenchmarkAPI(xargs.arch_nas_dataset) | ||||
|     geno      = best_arch | ||||
|     logger.log('The last model is {:}'.format(geno)) | ||||
|     info = nas_bench.query_by_arch( geno ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|     logger.log('-'*100) | ||||
|   """ | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("SETN") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   parser.add_argument('--select_num',         type=int,   help='The number of selected architectures to evaluate.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
| @@ -12,7 +12,7 @@ class SearchDataset(data.Dataset): | ||||
|     self.length      = len(self.train_split) | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}(name={datasetname}, length={length})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|     return ('{name}(name={datasetname}, train={tr_L}, valid={val_L})'.format(name=self.__class__.__name__, tr_L=len(self.train_split), val_L=len(self.valid_split))) | ||||
|  | ||||
|   def __len__(self): | ||||
|     return self.length | ||||
|   | ||||
| @@ -3,11 +3,36 @@ | ||||
| ################################################## | ||||
| import torch | ||||
| from os import path as osp | ||||
| # our modules | ||||
| # useful modules | ||||
| from config_utils import dict2config | ||||
| from .SharedUtils import change_key | ||||
| from .clone_weights import init_from_model | ||||
|  | ||||
| # Cell-based NAS Models | ||||
| def get_cell_based_tiny_net(config): | ||||
|   if config.name == 'DARTS-V1': | ||||
|     from .cell_searchs import TinyNetworkDartsV1 | ||||
|     return TinyNetworkDartsV1(config.C, config.N, config.max_nodes, config.num_classes, config.space) | ||||
|   elif config.name == 'DARTS-V2': | ||||
|     from .cell_searchs import TinyNetworkDartsV2 | ||||
|     return TinyNetworkDartsV2(config.C, config.N, config.max_nodes, config.num_classes, config.space) | ||||
|   elif config.name == 'GDAS': | ||||
|     from .cell_searchs import TinyNetworkGDAS | ||||
|     return TinyNetworkGDAS(config.C, config.N, config.max_nodes, config.num_classes, config.space) | ||||
|   elif config.name == 'SETN': | ||||
|     from .cell_searchs import TinyNetworkSETN | ||||
|     return TinyNetworkSETN(config.C, config.N, config.max_nodes, config.num_classes, config.space) | ||||
|   else: | ||||
|     raise ValueError('invalid network name : {:}'.format(config.name)) | ||||
|  | ||||
| # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op | ||||
| def get_search_spaces(xtype, name): | ||||
|   if xtype == 'cell': | ||||
|     from .cell_operations import SearchSpaceNames | ||||
|     return SearchSpaceNames[name] | ||||
|   else: | ||||
|     raise ValueError('invalid search-space type is {:}'.format(xtype)) | ||||
|  | ||||
|  | ||||
| def get_cifar_models(config): | ||||
|   from .CifarResNet      import CifarResNet | ||||
| @@ -22,9 +47,9 @@ def get_cifar_models(config): | ||||
|     else: | ||||
|       raise ValueError('invalid module type : {:}'.format(config.arch)) | ||||
|   elif super_type.startswith('infer'): | ||||
|     from .infers import InferWidthCifarResNet | ||||
|     from .infers import InferDepthCifarResNet | ||||
|     from .infers import InferCifarResNet | ||||
|     from .shape_infers import InferWidthCifarResNet | ||||
|     from .shape_infers import InferDepthCifarResNet | ||||
|     from .shape_infers import InferCifarResNet | ||||
|     assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type) | ||||
|     infer_mode = super_type.split('-')[1] | ||||
|     if infer_mode == 'width': | ||||
| @@ -46,8 +71,8 @@ def get_imagenet_models(config): | ||||
|     assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type) | ||||
|     infer_mode = super_type.split('-')[1] | ||||
|     if infer_mode == 'shape': | ||||
|       from .infers import InferImagenetResNet | ||||
|       from .infers import InferMobileNetV2 | ||||
|       from .shape_infers import InferImagenetResNet | ||||
|       from .shape_infers import InferMobileNetV2 | ||||
|       if config.arch == 'resnet': | ||||
|         return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual) | ||||
|       elif config.arch == "MobileNetV2": | ||||
| @@ -72,9 +97,9 @@ def obtain_model(config): | ||||
| def obtain_search_model(config): | ||||
|   if config.dataset == 'cifar': | ||||
|     if config.arch == 'resnet': | ||||
|       from .searchs import SearchWidthCifarResNet | ||||
|       from .searchs import SearchDepthCifarResNet | ||||
|       from .searchs import SearchShapeCifarResNet | ||||
|       from .shape_searchs import SearchWidthCifarResNet | ||||
|       from .shape_searchs import SearchDepthCifarResNet | ||||
|       from .shape_searchs import SearchShapeCifarResNet | ||||
|       if config.search_mode == 'width': | ||||
|         return SearchWidthCifarResNet(config.module, config.depth, config.class_num) | ||||
|       elif config.search_mode == 'depth': | ||||
| @@ -85,7 +110,7 @@ def obtain_search_model(config): | ||||
|     else: | ||||
|       raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset)) | ||||
|   elif config.dataset == 'imagenet': | ||||
|     from .searchs import SearchShapeImagenetResNet | ||||
|     from .shape_searchs import SearchShapeImagenetResNet | ||||
|     assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode ) | ||||
|     if config.arch == 'resnet': | ||||
|       return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num) | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| 
 | ||||
| __all__ = ['OPS', 'ReLUConvBN', 'SearchSpaceNames'] | ||||
| __all__ = ['OPS', 'ReLUConvBN', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||
| 
 | ||||
| OPS = { | ||||
|   'none'         : lambda C_in, C_out, stride: Zero(C_in, C_out, stride), | ||||
| @@ -14,8 +14,60 @@ OPS = { | ||||
| } | ||||
| 
 | ||||
| CONNECT_NAS_BENCHMARK  = ['none', 'skip_connect', 'nor_conv_3x3'] | ||||
| AA_NAS_BENCHMARK       = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] | ||||
| 
 | ||||
| SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK} | ||||
| SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK, | ||||
|                     'aa-nas'      : AA_NAS_BENCHMARK} | ||||
| 
 | ||||
| 
 | ||||
| class ReLUConvBN(nn.Module): | ||||
| 
 | ||||
|   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation): | ||||
|     super(ReLUConvBN, self).__init__() | ||||
|     self.op = nn.Sequential( | ||||
|       nn.ReLU(inplace=False), | ||||
|       nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), | ||||
|       nn.BatchNorm2d(C_out) | ||||
|     ) | ||||
| 
 | ||||
|   def forward(self, x): | ||||
|     return self.op(x) | ||||
| 
 | ||||
| 
 | ||||
| class ResNetBasicblock(nn.Module): | ||||
| 
 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1) | ||||
|     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, 1, 1) | ||||
|     if stride == 2: | ||||
|       self.downsample = nn.Sequential( | ||||
|                            nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                            nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.in_dim  = inplanes | ||||
|     self.out_dim = planes | ||||
|     self.stride  = stride | ||||
|     self.num_conv = 2 | ||||
| 
 | ||||
|   def extra_repr(self): | ||||
|     string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__) | ||||
|     return string | ||||
| 
 | ||||
|   def forward(self, inputs): | ||||
| 
 | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
| 
 | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     return residual + basicblock | ||||
| 
 | ||||
| 
 | ||||
| class POOLING(nn.Module): | ||||
| @@ -36,20 +88,6 @@ class POOLING(nn.Module): | ||||
|     return self.op(x) | ||||
| 
 | ||||
| 
 | ||||
| class ReLUConvBN(nn.Module): | ||||
| 
 | ||||
|   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation): | ||||
|     super(ReLUConvBN, self).__init__() | ||||
|     self.op = nn.Sequential( | ||||
|       nn.ReLU(inplace=False), | ||||
|       nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), | ||||
|       nn.BatchNorm2d(C_out) | ||||
|     ) | ||||
| 
 | ||||
|   def forward(self, x): | ||||
|     return self.op(x) | ||||
| 
 | ||||
| 
 | ||||
| class Identity(nn.Module): | ||||
| 
 | ||||
|   def __init__(self): | ||||
| @@ -0,0 +1,4 @@ | ||||
| from .search_model_darts_v1 import TinyNetworkDartsV1 | ||||
| from .search_model_darts_v2 import TinyNetworkDartsV2 | ||||
| from .search_model_gdas     import TinyNetworkGDAS | ||||
| from .search_model_setn     import TinyNetworkSETN | ||||
|   | ||||
| @@ -2,7 +2,7 @@ import math, torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from copy import deepcopy | ||||
| from .operations import OPS, ReLUConvBN | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| class SearchCell(nn.Module): | ||||
| @@ -113,84 +113,3 @@ class SearchCell(nn.Module): | ||||
|         inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|  | ||||
| class InferCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, genotype, C_in, C_out, stride): | ||||
|     super(InferCell, self).__init__() | ||||
|  | ||||
|     self.layers  = nn.ModuleList() | ||||
|     self.node_IN = [] | ||||
|     self.node_IX = [] | ||||
|     self.genotype = deepcopy(genotype) | ||||
|     for i in range(1, len(genotype)): | ||||
|       node_info = genotype[i-1] | ||||
|       cur_index = [] | ||||
|       cur_innod = [] | ||||
|       for (op_name, op_in) in node_info: | ||||
|         if op_in == 0: | ||||
|           layer = OPS[op_name](C_in , C_out, stride) | ||||
|         else: | ||||
|           layer = OPS[op_name](C_out, C_out,      1) | ||||
|         cur_index.append( len(self.layers) ) | ||||
|         cur_innod.append( op_in ) | ||||
|         self.layers.append( layer ) | ||||
|       self.node_IX.append( cur_index ) | ||||
|       self.node_IN.append( cur_innod ) | ||||
|     self.nodes   = len(genotype) | ||||
|     self.in_dim  = C_in | ||||
|     self.out_dim = C_out | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__) | ||||
|     laystr = [] | ||||
|     for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)): | ||||
|       y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)] | ||||
|       x = '{:}<-({:})'.format(i+1, ','.join(y)) | ||||
|       laystr.append( x ) | ||||
|     return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr()) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     nodes = [inputs] | ||||
|     for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)): | ||||
|       node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) ) | ||||
|       nodes.append( node_feature ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|  | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1) | ||||
|     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, 1, 1) | ||||
|     if stride == 2: | ||||
|       self.downsample = nn.Sequential( | ||||
|                            nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                            nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.in_dim  = inplanes | ||||
|     self.out_dim = planes | ||||
|     self.stride  = stride | ||||
|     self.num_conv = 2 | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__) | ||||
|     return string | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     return residual + basicblock | ||||
|   | ||||
							
								
								
									
										158
									
								
								lib/models/cell_searchs/genotypes.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										158
									
								
								lib/models/cell_searchs/genotypes.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,158 @@ | ||||
| from copy import deepcopy | ||||
|  | ||||
|  | ||||
|  | ||||
| def get_combination(space, num): | ||||
|   combs = [] | ||||
|   for i in range(num): | ||||
|     if i == 0: | ||||
|       for func in space: | ||||
|         combs.append( [(func, i)] ) | ||||
|     else: | ||||
|       new_combs = [] | ||||
|       for string in combs: | ||||
|         for func in space: | ||||
|           xstring = string + [(func, i)] | ||||
|           new_combs.append( xstring ) | ||||
|       combs = new_combs | ||||
|   return combs | ||||
|    | ||||
|  | ||||
|  | ||||
| class Structure: | ||||
|  | ||||
|   def __init__(self, genotype): | ||||
|     assert isinstance(genotype, list) or isinstance(genotype, tuple), 'invalid class of genotype : {:}'.format(type(genotype)) | ||||
|     self.node_num = len(genotype) + 1 | ||||
|     self.nodes    = [] | ||||
|     self.node_N   = [] | ||||
|     for idx, node_info in enumerate(genotype): | ||||
|       assert isinstance(node_info, list) or isinstance(node_info, tuple), 'invalid class of node_info : {:}'.format(type(node_info)) | ||||
|       assert len(node_info) >= 1, 'invalid length : {:}'.format(len(node_info)) | ||||
|       for node_in in node_info: | ||||
|         assert isinstance(node_in, list) or isinstance(node_in, tuple), 'invalid class of in-node : {:}'.format(type(node_in)) | ||||
|         assert len(node_in) == 2 and node_in[1] <= idx, 'invalid in-node : {:}'.format(node_in) | ||||
|       self.node_N.append( len(node_info) ) | ||||
|       self.nodes.append( tuple(deepcopy(node_info)) ) | ||||
|  | ||||
|   def tolist(self, remove_str): | ||||
|     # convert this class to the list, if remove_str is 'none', then remove the 'none' operation. | ||||
|     # note that we re-order the input node in this function | ||||
|     # return the-genotype-list and success [if unsuccess, it is not a connectivity] | ||||
|     genotypes = [] | ||||
|     for node_info in self.nodes: | ||||
|       node_info = list( node_info ) | ||||
|       node_info = sorted(node_info, key=lambda x: (x[1], x[0])) | ||||
|       node_info = tuple(filter(lambda x: x[0] != remove_str, node_info)) | ||||
|       if len(node_info) == 0: return None, False | ||||
|       genotypes.append( node_info ) | ||||
|     return genotypes, True | ||||
|  | ||||
|   def node(self, index): | ||||
|     assert index > 0 and index <= len(self), 'invalid index={:} < {:}'.format(index, len(self)) | ||||
|     return self.nodes[index] | ||||
|  | ||||
|   def tostr(self): | ||||
|     strings = [] | ||||
|     for node_info in self.nodes: | ||||
|       string = '|'.join([x[0]+'~{:}'.format(x[1]) for x in node_info]) | ||||
|       string = '|{:}|'.format(string) | ||||
|       strings.append( string ) | ||||
|     return '+'.join(strings) | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__)) | ||||
|  | ||||
|   def __len__(self): | ||||
|     return len(self.nodes) + 1 | ||||
|  | ||||
|   def __getitem__(self, index): | ||||
|     return self.nodes[index] | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2structure(xstr): | ||||
|     assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) | ||||
|     nodestrs = xstr.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(nodestrs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       genotypes.append( input_infos ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2fullstructure(xstr, default_name='none'): | ||||
|     assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) | ||||
|     nodestrs = xstr.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(nodestrs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = list( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       all_in_nodes= list(x[1] for x in input_infos) | ||||
|       for j in range(i): | ||||
|         if j not in all_in_nodes: input_infos.append((default_name, j)) | ||||
|       node_info = sorted(input_infos, key=lambda x: (x[1], x[0])) | ||||
|       genotypes.append( tuple(node_info) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   @staticmethod | ||||
|   def gen_all(search_space, num, return_ori): | ||||
|     assert isinstance(search_space, list) or isinstance(search_space, tuple), 'invalid class of search-space : {:}'.format(type(search_space)) | ||||
|     assert num >= 2, 'There should be at least two nodes in a neural cell instead of {:}'.format(num) | ||||
|     all_archs = get_combination(search_space, 1) | ||||
|     for i, arch in enumerate(all_archs): | ||||
|       all_archs[i] = [ tuple(arch) ] | ||||
|    | ||||
|     for inode in range(2, num): | ||||
|       cur_nodes = get_combination(search_space, inode) | ||||
|       new_all_archs = [] | ||||
|       for previous_arch in all_archs: | ||||
|         for cur_node in cur_nodes: | ||||
|           new_all_archs.append( previous_arch + [tuple(cur_node)] ) | ||||
|       all_archs = new_all_archs | ||||
|     if return_ori: | ||||
|       return all_archs | ||||
|     else: | ||||
|       return [Structure(x) for x in all_archs] | ||||
|  | ||||
|  | ||||
|  | ||||
| ResNet_CODE = Structure( | ||||
|   [(('nor_conv_3x3', 0), ), # node-1  | ||||
|    (('nor_conv_3x3', 1), ), # node-2 | ||||
|    (('skip_connect', 0), ('skip_connect', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllConv3x3_CODE = Structure( | ||||
|   [(('nor_conv_3x3', 0), ), # node-1  | ||||
|    (('nor_conv_3x3', 0), ('nor_conv_3x3', 1)), # node-2 | ||||
|    (('nor_conv_3x3', 0), ('nor_conv_3x3', 1), ('nor_conv_3x3', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllFull_CODE = Structure( | ||||
|   [(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0)), # node-1  | ||||
|    (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1)), # node-2 | ||||
|    (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1), ('skip_connect', 2), ('nor_conv_1x1', 2), ('nor_conv_3x3', 2), ('avg_pool_3x3', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllConv1x1_CODE = Structure( | ||||
|   [(('nor_conv_1x1', 0), ), # node-1  | ||||
|    (('nor_conv_1x1', 0), ('nor_conv_1x1', 1)), # node-2 | ||||
|    (('nor_conv_1x1', 0), ('nor_conv_1x1', 1), ('nor_conv_1x1', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllIdentity_CODE = Structure( | ||||
|   [(('skip_connect', 0), ), # node-1  | ||||
|    (('skip_connect', 0), ('skip_connect', 1)), # node-2 | ||||
|    (('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| architectures = {'resnet'  : ResNet_CODE, | ||||
|                  'all_c3x3': AllConv3x3_CODE, | ||||
|                  'all_c1x1': AllConv1x1_CODE, | ||||
|                  'all_idnt': AllIdentity_CODE, | ||||
|                  'all_full': AllFull_CODE} | ||||
							
								
								
									
										134
									
								
								lib/models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										134
									
								
								lib/models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,134 @@ | ||||
| import math, random, torch | ||||
| import warnings | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| class SearchCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names): | ||||
|     super(SearchCell, self).__init__() | ||||
|  | ||||
|     self.op_names  = deepcopy(op_names) | ||||
|     self.edges     = nn.ModuleDict() | ||||
|     self.max_nodes = max_nodes | ||||
|     self.in_dim    = C_in | ||||
|     self.out_dim   = C_out | ||||
|     for i in range(1, max_nodes): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if j == 0: | ||||
|           xlists = [OPS[op_name](C_in , C_out, stride) for op_name in op_names] | ||||
|         else: | ||||
|           xlists = [OPS[op_name](C_in , C_out,      1) for op_name in op_names] | ||||
|         self.edges[ node_str ] = nn.ModuleList( xlists ) | ||||
|     self.edge_keys  = sorted(list(self.edges.keys())) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|     self.num_edges  = len(self.edges) | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__) | ||||
|     return string | ||||
|  | ||||
|   def forward(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # GDAS | ||||
|   def forward_gdas(self, inputs, alphas, _tau): | ||||
|     avoid_zero = 0 | ||||
|     while True: | ||||
|       gumbels = -torch.empty_like(alphas).exponential_().log() | ||||
|       logits  = (alphas.log_softmax(dim=1) + gumbels) / _tau | ||||
|       probs   = nn.functional.softmax(logits, dim=1) | ||||
|       index   = probs.max(-1, keepdim=True)[1] | ||||
|       one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|       hardwts = one_h - probs.detach() + probs | ||||
|       if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|         continue # avoid the numerical error | ||||
|       nodes   = [inputs] | ||||
|       for i in range(1, self.max_nodes): | ||||
|         inter_nodes = [] | ||||
|         for j in range(i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           weights  = hardwts[ self.edge2index[node_str] ] | ||||
|           argmaxs  = index[ self.edge2index[node_str] ].item() | ||||
|           weigsum  = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) ) | ||||
|           inter_nodes.append( weigsum ) | ||||
|         nodes.append( sum(inter_nodes) ) | ||||
|       avoid_zero += 1 | ||||
|       if nodes[-1].sum().item() == 0: | ||||
|         if avoid_zero < 10: continue | ||||
|         else: | ||||
|           warnings.warn('get zero outputs with avoid_zero={:}'.format(avoid_zero)) | ||||
|           break | ||||
|       else: | ||||
|         break | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # joint | ||||
|   def forward_joint(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() | ||||
|         inter_nodes.append( aggregation ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # uniform random sampling per iteration | ||||
|   def forward_urs(self, inputs): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       while True: # to avoid select zero for all ops | ||||
|         sops, has_non_zero = [], False | ||||
|         for j in range(i): | ||||
|           node_str   = '{:}<-{:}'.format(i, j) | ||||
|           candidates = self.edges[node_str] | ||||
|           select_op  = random.choice(candidates) | ||||
|           sops.append( select_op ) | ||||
|           if not hasattr(select_op, 'is_zero') or select_op.is_zero == False: has_non_zero=True | ||||
|         if has_non_zero: break | ||||
|       inter_nodes = [] | ||||
|       for j, select_op in enumerate(sops): | ||||
|         inter_nodes.append( select_op(nodes[j]) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # select the argmax | ||||
|   def forward_select(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) ) | ||||
|         #inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # forward with a specific structure | ||||
|   def forward_dynamic(self, inputs, structure): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       cur_op_node = structure.nodes[i-1] | ||||
|       inter_nodes = [] | ||||
|       for op_name, j in cur_op_node: | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_index = self.op_names.index( op_name ) | ||||
|         inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
							
								
								
									
										93
									
								
								lib/models/cell_searchs/search_model_darts_v1.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										93
									
								
								lib/models/cell_searchs/search_model_darts_v1.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,93 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkDartsV1(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space): | ||||
|     super(TinyNetworkDartsV1, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell(feature, alphas) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										93
									
								
								lib/models/cell_searchs/search_model_darts_v2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										93
									
								
								lib/models/cell_searchs/search_model_darts_v2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,93 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkDartsV2(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space): | ||||
|     super(TinyNetworkDartsV2, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell(feature, alphas) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
| @@ -6,7 +6,7 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from .infer_cells  import ResNetBasicblock | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
| @@ -44,7 +44,6 @@ class TinyNetworkGDAS(nn.Module): | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.tau        = 10 | ||||
|     self.nan_count  = 0 | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
| @@ -52,9 +51,8 @@ class TinyNetworkGDAS(nn.Module): | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def set_tau(self, tau, _nan_count=0): | ||||
|   def set_tau(self, tau): | ||||
|     self.tau = tau | ||||
|     self.nan_count = _nan_count | ||||
|  | ||||
|   def get_tau(self): | ||||
|     return self.tau | ||||
| @@ -85,27 +83,10 @@ class TinyNetworkGDAS(nn.Module): | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     def gumbel_softmax(_logits, _tau): | ||||
|       while True: # a trick to avoid the gumbels bug | ||||
|         gumbels    = -torch.empty_like(_logits).exponential_().log() | ||||
|         new_logits = (_logits.log_softmax(dim=1) + gumbels) / _tau | ||||
|         probs      = nn.functional.softmax(new_logits, dim=1) | ||||
|         index      = probs.max(-1, keepdim=True)[1] | ||||
|         if index[0].item() == self.op_names.index('none') and index[3].item() == self.op_names.index('none') and index[5].item() == self.op_names.index('none'): continue | ||||
|         if index[1].item() == self.op_names.index('none') and index[2].item() == self.op_names.index('none') and index[3].item() == self.op_names.index('none') and index[4].item() == self.op_names.index('none'): continue | ||||
|         if index[3].item() == self.op_names.index('none') and index[4].item() == self.op_names.index('none') and index[5].item() == self.op_names.index('none'): continue | ||||
|         if index[3].item() == self.op_names.index('none') and index[0].item() == self.op_names.index('none') and index[1].item() == self.op_names.index('none'): continue | ||||
|         one_h      = torch.zeros_like(_logits).scatter_(-1, index, 1.0) | ||||
|         xres       = one_h - probs.detach() + probs | ||||
|         if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break | ||||
|         self.nan_count += 1 | ||||
|       return xres, index | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         alphas, IDX  = gumbel_softmax(self.arch_parameters, self.tau) | ||||
|         feature = cell.forward_gdas(feature, alphas, IDX.cpu()) | ||||
|         feature = cell.forward_gdas(feature, self.arch_parameters, self.tau) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|  | ||||
|   | ||||
							
								
								
									
										130
									
								
								lib/models/cell_searchs/search_model_setn.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										130
									
								
								lib/models/cell_searchs/search_model_setn.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,130 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkSETN(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space): | ||||
|     super(TinyNetworkSETN, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.mode       = 'urs' | ||||
|     self.dynamic_cell = None | ||||
|      | ||||
|   def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|     assert mode in ['urs', 'joint', 'select', 'dynamic'] | ||||
|     self.mode = mode | ||||
|     if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell ) | ||||
|     else                : self.dynamic_cell = None | ||||
|  | ||||
|   def get_cal_mode(self): | ||||
|     return self.mode | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|  | ||||
|   def dync_genotype(self): | ||||
|     genotypes = [] | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|         op_index = torch.multinomial(weights, 1).item() | ||||
|         op_name  = self.op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = alphas.detach().cpu() | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         if self.mode == 'urs': | ||||
|           feature = cell.forward_urs(feature) | ||||
|         elif self.mode == 'select': | ||||
|           feature = cell.forward_select(feature, alphas_cpu) | ||||
|         elif self.mode == 'joint': | ||||
|           feature = cell.forward_joint(feature, alphas) | ||||
|         elif self.mode == 'dynamic': | ||||
|           feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|         else: raise ValueError('invalid mode={:}'.format(self.mode)) | ||||
|       else: feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										36
									
								
								scripts-search/algos/DARTS-V1.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										36
									
								
								scripts-search/algos/DARTS-V1.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,36 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/DARTS-V1-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V1.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
							
								
								
									
										36
									
								
								scripts-search/algos/DARTS-V2.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										36
									
								
								scripts-search/algos/DARTS-V2.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,36 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/DARTS-V2-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V2.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
							
								
								
									
										37
									
								
								scripts-search/algos/GDAS.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								scripts-search/algos/GDAS.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,37 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/algos/GDAS.sh cifar10 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/GDAS-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--tau_max 10 --tau_min 0.1 \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
							
								
								
									
										38
									
								
								scripts-search/algos/SETN.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								scripts-search/algos/SETN.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,38 @@ | ||||
| #!/bin/bash | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 | ||||
| # bash ./scripts-search/scripts/algos/SETN.sh cifar10 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/SETN-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/SETN.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--select_num 100 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
		Reference in New Issue
	
	Block a user