Update Warmup
This commit is contained in:
		| @@ -2,7 +2,13 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ###################################################################################### | ||||
| # In this file, we aims to evaluate three kinds of channel searching strategies: | ||||
| # -  | ||||
| # - channel-wise interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + Gumbel-Softmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| # For simplicity, we use tas, fbv2, and tunas to refer these three strategies. Their official implementations are at the following links: | ||||
| # - TAS: https://github.com/D-X-Y/AutoDL-Projects/blob/master/docs/NeurIPS-2019-TAS.md | ||||
| # - FBV2: https://github.com/facebookresearch/mobile-vision | ||||
| # - TuNAS: https://github.com/google-research/google-research/tree/master/tunas | ||||
| #### | ||||
| # python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --warmup_ratio 0.25 | ||||
| #### | ||||
|   | ||||
| @@ -26,7 +26,8 @@ from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
|  | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None, suffix='-AWD0.0-WARMNone'): | ||||
| # def fetch_data(root_dir='./output/search', search_space='tss', dataset=None, suffix='-WARMNone'): | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None, suffix='-WARM0.3'): | ||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|   seeds = [777, 888, 999] | ||||
| @@ -39,9 +40,12 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None, suf | ||||
|     alg2name['ENAS'] = 'enas-affine0_BN0-None' | ||||
|     alg2name['SETN'] = 'setn-affine0_BN0-None' | ||||
|   else: | ||||
|     alg2name['TAS'] = 'tas-affine0_BN0{:}'.format(suffix) | ||||
|     alg2name['FBNetV2'] = 'fbv2-affine0_BN0{:}'.format(suffix) | ||||
|     alg2name['TuNAS'] = 'tunas-affine0_BN0{:}'.format(suffix) | ||||
|     # alg2name['TAS'] = 'tas-affine0_BN0{:}'.format(suffix) | ||||
|     # alg2name['FBNetV2'] = 'fbv2-affine0_BN0{:}'.format(suffix) | ||||
|     # alg2name['TuNAS'] = 'tunas-affine0_BN0{:}'.format(suffix) | ||||
|     alg2name['channel-wise interpaltion'] = 'tas-affine0_BN0-AWD0.001{:}'.format(suffix) | ||||
|     alg2name['masking + Gumbel-Softmax'] = 'fbv2-affine0_BN0-AWD0.001{:}'.format(suffix) | ||||
|     alg2name['masking + sampling'] = 'tunas-affine0_BN0-AWD0.0{:}'.format(suffix) | ||||
|   for alg, name in alg2name.items(): | ||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'seed-{:}-last-info.pth') | ||||
|   alg2data = OrderedDict() | ||||
| @@ -98,8 +102,11 @@ def visualize_curve(api, vis_save_dir, search_space): | ||||
|     for idx, (alg, data) in enumerate(alg2data.items()): | ||||
|       print('plot alg : {:}'.format(alg)) | ||||
|       xs, accuracies = [], [] | ||||
|       for iepoch in range(epochs+1): | ||||
|         structures, accs = [_[iepoch-1] for _ in data], [] | ||||
|       for iepoch in range(epochs + 1): | ||||
|         try: | ||||
|           structures, accs = [_[iepoch-1] for _ in data], [] | ||||
|         except: | ||||
|           raise ValueError('This alg {:} on {:} has invalid checkpoints.'.format(alg, dataset)) | ||||
|         for structure in structures: | ||||
|           info = api.get_more_info(structure, dataset=dataset, hp=90 if api.search_space_name == 'size' else 200, is_random=False) | ||||
|           accs.append(info['test-accuracy']) | ||||
| @@ -131,5 +138,5 @@ if __name__ == '__main__': | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|  | ||||
|   api = create(None, args.search_space, verbose=False) | ||||
|   api = create(None, args.search_space, fast_mode=True, verbose=False) | ||||
|   visualize_curve(api, save_dir, args.search_space) | ||||
|   | ||||
| @@ -2,8 +2,8 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # Here, we utilized three techniques to search for the number of channels: | ||||
| # - feature interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + GumbelSoftmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - channel-wise interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + Gumbel-Softmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| from typing import List, Text, Any | ||||
| import random, torch | ||||
| @@ -55,10 +55,10 @@ class GenericNAS301Model(nn.Module): | ||||
|     assert algo in ['fbv2', 'tunas', 'tas'], 'invalid algo : {:}'.format(algo) | ||||
|     self._algo = algo | ||||
|     self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs))) | ||||
|     if algo == 'fbv2' or algo == 'tunas': | ||||
|       self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))) | ||||
|       for i in range(len(self._candidate_Cs)): | ||||
|         self._masks.data[i, :self._candidate_Cs[i]] = 1 | ||||
|     # if algo == 'fbv2' or algo == 'tunas': | ||||
|     self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))) | ||||
|     for i in range(len(self._candidate_Cs)): | ||||
|       self._masks.data[i, :self._candidate_Cs[i]] = 1 | ||||
|    | ||||
|   @property | ||||
|   def tau(self): | ||||
|   | ||||
| @@ -7,7 +7,6 @@ | ||||
| # [2020.08.31] NATS-sss-v1_0-50262.pickle.pbz2                                      # | ||||
| ##################################################################################### | ||||
| import os, copy, random, numpy as np | ||||
| from pathlib import Path | ||||
| from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
| from .api_utils import time_string | ||||
| @@ -15,6 +14,8 @@ from .api_utils import pickle_load | ||||
| from .api_utils import ArchResults | ||||
| from .api_utils import NASBenchMetaAPI | ||||
| from .api_utils import remap_dataset_set_names | ||||
| from .api_utils import nats_is_dir | ||||
| from .api_utils import nats_is_file | ||||
| from .api_utils import PICKLE_EXT | ||||
|  | ||||
|  | ||||
| @@ -70,20 +71,20 @@ class NATSsize(NASBenchMetaAPI): | ||||
|       else: | ||||
|         file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], '{:}.{:}'.format(ALL_BASE_NAMES[-1], PICKLE_EXT)) | ||||
|       print ('{:} Try to use the default NATS-Bench (size) path from fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, file_path_or_dict)) | ||||
|     if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): | ||||
|     if isinstance(file_path_or_dict, str): | ||||
|       file_path_or_dict = str(file_path_or_dict) | ||||
|       if verbose: | ||||
|         print('{:} Try to create the NATS-Bench (size) api from {:} with fast_mode={:}'.format(time_string(), file_path_or_dict, fast_mode)) | ||||
|       if not os.path.isfile(file_path_or_dict) and not os.path.isdir(file_path_or_dict): | ||||
|       if not nats_is_file(file_path_or_dict) and not nats_is_dir(file_path_or_dict): | ||||
|         raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict)) | ||||
|       self.filename = Path(file_path_or_dict).name | ||||
|       self.filename = os.path.basename(file_path_or_dict) | ||||
|       if fast_mode: | ||||
|         if os.path.isfile(file_path_or_dict): | ||||
|         if nats_is_file(file_path_or_dict): | ||||
|           raise ValueError('fast_mode={:} must feed the path for directory : {:}'.format(fast_mode, file_path_or_dict)) | ||||
|         else: | ||||
|           self._archive_dir = file_path_or_dict | ||||
|       else: | ||||
|         if os.path.isdir(file_path_or_dict): | ||||
|         if nats_is_dir(file_path_or_dict): | ||||
|           raise ValueError('fast_mode={:} must feed the path for file : {:}'.format(fast_mode, file_path_or_dict)) | ||||
|         else: | ||||
|           file_path_or_dict = pickle_load(file_path_or_dict) | ||||
|   | ||||
| @@ -7,7 +7,6 @@ | ||||
| # [2020.08.31] NATS-tss-v1_0-3ffb9.pickle.pbz2                                      # | ||||
| ##################################################################################### | ||||
| import os, copy, random, numpy as np | ||||
| from pathlib import Path | ||||
| from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
| import warnings | ||||
| @@ -16,6 +15,8 @@ from .api_utils import pickle_load | ||||
| from .api_utils import ArchResults | ||||
| from .api_utils import NASBenchMetaAPI | ||||
| from .api_utils import remap_dataset_set_names | ||||
| from .api_utils import nats_is_dir | ||||
| from .api_utils import nats_is_file | ||||
| from .api_utils import PICKLE_EXT | ||||
|  | ||||
|  | ||||
| @@ -67,20 +68,20 @@ class NATStopology(NASBenchMetaAPI): | ||||
|       else: | ||||
|         file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], '{:}.{:}'.format(ALL_BASE_NAMES[-1], PICKLE_EXT)) | ||||
|       print ('{:} Try to use the default NATS-Bench (topology) path from {:}.'.format(time_string(), file_path_or_dict)) | ||||
|     if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): | ||||
|     if isinstance(file_path_or_dict, str): | ||||
|       file_path_or_dict = str(file_path_or_dict) | ||||
|       if verbose: | ||||
|         print('{:} Try to create the NATS-Bench (topology) api from {:} with fast_mode={:}'.format(time_string(), file_path_or_dict, fast_mode)) | ||||
|       if not os.path.isfile(file_path_or_dict) and not os.path.isdir(file_path_or_dict): | ||||
|       if not nats_is_file(file_path_or_dict) and not nats_is_dir(file_path_or_dict): | ||||
|         raise ValueError('{:} is neither a file or a dir.'.format(file_path_or_dict)) | ||||
|       self.filename = Path(file_path_or_dict).name | ||||
|       self.filename = os.path.basename(file_path_or_dict) | ||||
|       if fast_mode: | ||||
|         if os.path.isfile(file_path_or_dict): | ||||
|         if nats_is_file(file_path_or_dict): | ||||
|           raise ValueError('fast_mode={:} must feed the path for directory : {:}'.format(fast_mode, file_path_or_dict)) | ||||
|         else: | ||||
|           self._archive_dir = file_path_or_dict | ||||
|       else: | ||||
|         if os.path.isdir(file_path_or_dict): | ||||
|         if nats_is_dir(file_path_or_dict): | ||||
|           raise ValueError('fast_mode={:} must feed the path for file : {:}'.format(fast_mode, file_path_or_dict)) | ||||
|         else: | ||||
|           file_path_or_dict = pickle_load(file_path_or_dict) | ||||
|   | ||||
| @@ -17,6 +17,7 @@ from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
|  | ||||
|  | ||||
| _FILE_SYSTEM = 'default' | ||||
| PICKLE_EXT = 'pickle.pbz2' | ||||
|  | ||||
|  | ||||
| @@ -45,6 +46,34 @@ def time_string(): | ||||
|   return string | ||||
|  | ||||
|  | ||||
| def reset_file_system(lib: Text='default'): | ||||
|   _FILE_SYSTEM = lib | ||||
|  | ||||
|  | ||||
| def get_file_system(lib: Text='default'): | ||||
|   return _FILE_SYSTEM | ||||
|  | ||||
|  | ||||
| def nats_is_dir(file_path): | ||||
|   if _FILE_SYSTEM == 'default': | ||||
|     return os.path.isdir(file_path) | ||||
|   elif _FILE_SYSTEM == 'google': | ||||
|     import tensorflow as tf | ||||
|     return tf.gfile.isdir(file_path) | ||||
|   else: | ||||
|     raise ValueError('Unknown file system lib: {:}'.format(_FILE_SYSTEM)) | ||||
|  | ||||
|  | ||||
| def nats_is_file(file_path): | ||||
|   if _FILE_SYSTEM == 'default': | ||||
|     return os.path.isfile(file_path) | ||||
|   elif _FILE_SYSTEM == 'google': | ||||
|     import tensorflow as tf | ||||
|     return tf.gfile.exists(file_path) and not tf.gfile.isdir(file_path) | ||||
|   else: | ||||
|     raise ValueError('Unknown file system lib: {:}'.format(_FILE_SYSTEM)) | ||||
|  | ||||
|  | ||||
| def remap_dataset_set_names(dataset, metric_on_set, verbose=False): | ||||
|   """re-map the metric_on_set to internal keys""" | ||||
|   if verbose: | ||||
| @@ -146,10 +175,10 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|             time_string(), archive_root, index)) | ||||
|     if archive_root is None: | ||||
|       archive_root = os.path.join(os.environ['TORCH_HOME'], '{:}-full'.format(self.ALL_BASE_NAMES[-1])) | ||||
|       if not os.path.isdir(archive_root): | ||||
|       if not nats_is_dir(archive_root): | ||||
|         warnings.warn('The input archive_root is None and the default archive_root path ({:}) does not exist, try to use self.archive_dir.'.format(archive_root)) | ||||
|         archive_root = self.archive_dir | ||||
|     if archive_root is None or not os.path.isdir(archive_root): | ||||
|     if archive_root is None or not nats_is_dir(archive_root): | ||||
|       raise ValueError('Invalid archive_root : {:}'.format(archive_root)) | ||||
|     if index is None: | ||||
|       indexes = list(range(len(self))) | ||||
| @@ -158,9 +187,9 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|     for idx in indexes: | ||||
|       assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx) | ||||
|       xfile_path = os.path.join(archive_root, '{:06d}.{:}'.format(idx, PICKLE_EXT)) | ||||
|       if not os.path.isfile(xfile_path): | ||||
|       if not nats_is_file(xfile_path): | ||||
|         xfile_path = os.path.join(archive_root, '{:d}.{:}'.format(idx, PICKLE_EXT)) | ||||
|       assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path) | ||||
|       assert nats_is_file(xfile_path), 'invalid data path : {:}'.format(xfile_path) | ||||
|       xdata = pickle_load(xfile_path) | ||||
|       assert isinstance(xdata, dict), 'invalid format of data in {:}'.format(xfile_path) | ||||
|       self.evaluated_indexes.add(idx) | ||||
|   | ||||
| @@ -1,10 +1,10 @@ | ||||
| #!/bin/bash | ||||
| # bash ./NATS/search-size.sh 0 777 | ||||
| # bash scripts-search/NATS/search-size.sh 0 0.3 777 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for GPU-device and seed" | ||||
|   echo "Need 3 parameters for GPU-device, warmup-ratio, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -15,16 +15,19 @@ else | ||||
| fi | ||||
|  | ||||
| device=$1 | ||||
| seed=$2 | ||||
| ratio=$2 | ||||
| seed=$3 | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tas --warmup_ratio ${ratio} --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --warmup_ratio ${ratio} --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --warmup_ratio ${ratio} --rand_seed ${seed} | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --rand_seed ${seed} | ||||
| # | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo fbv2 --warmup_ratio ${ratio} --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --warmup_ratio ${ratio} --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --warmup_ratio ${ratio} --rand_seed ${seed} | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --rand_seed ${seed} | ||||
| # | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --warmup_ratio ${ratio} --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --warmup_ratio ${ratio} --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --warmup_ratio ${ratio} --rand_seed ${seed} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user