Update visualization codes for NATS-Bench
This commit is contained in:
parent
46b92e37e2
commit
bda30c7098
@ -43,20 +43,14 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
|
||||
# alg2name['REINFORCE'] = 'REINFORCE-0.01'
|
||||
# alg2name['RANDOM'] = 'RANDOM'
|
||||
# alg2name['BOHB'] = 'BOHB'
|
||||
if dataset == 'cifar10':
|
||||
suffixes = ['-T200000', '-T200000-FULL']
|
||||
elif dataset == 'cifar100':
|
||||
suffixes = ['-T40000', '-T40000-FULL']
|
||||
elif search_space == 'tss':
|
||||
suffixes = ['-T120000', '-T120000-FULL']
|
||||
elif search_space == 'sss':
|
||||
suffixes = ['-T60000', '-T60000-FULL']
|
||||
else:
|
||||
raise ValueError('Unkonwn dataset : {:}'.format(dataset))
|
||||
if search_space == 'tss':
|
||||
hp = '$\mathcal{H}^{1}$'
|
||||
if dataset == 'cifar10':
|
||||
suffixes = ['-T800000', '-T800000-FULL']
|
||||
elif search_space == 'sss':
|
||||
hp = '$\mathcal{H}^{2}$'
|
||||
if dataset == 'cifar10':
|
||||
suffixes = ['-T200000', '-T200000-FULL']
|
||||
else:
|
||||
raise ValueError('Unkonwn search space: {:}'.format(search_space))
|
||||
|
||||
@ -92,21 +86,21 @@ def query_performance(api, data, dataset, ticket):
|
||||
return np.mean(results), np.std(results)
|
||||
|
||||
|
||||
y_min_s = {('cifar10', 'tss'): 90,
|
||||
('cifar10', 'sss'): 90,
|
||||
y_min_s = {('cifar10', 'tss'): 91,
|
||||
('cifar10', 'sss'): 91,
|
||||
('cifar100', 'tss'): 65,
|
||||
('cifar100', 'sss'): 65,
|
||||
('ImageNet16-120', 'tss'): 36,
|
||||
('ImageNet16-120', 'sss'): 40}
|
||||
|
||||
y_max_s = {('cifar10', 'tss'): 94.5,
|
||||
('cifar10', 'sss'): 94.5,
|
||||
('cifar10', 'sss'): 93.5,
|
||||
('cifar100', 'tss'): 72.5,
|
||||
('cifar100', 'sss'): 70.5,
|
||||
('ImageNet16-120', 'tss'): 46,
|
||||
('ImageNet16-120', 'sss'): 46}
|
||||
|
||||
x_axis_s = {('cifar10', 'tss'): 200000,
|
||||
x_axis_s = {('cifar10', 'tss'): 800000,
|
||||
('cifar10', 'sss'): 200000,
|
||||
('cifar100', 'tss'): 400,
|
||||
('cifar100', 'sss'): 400,
|
||||
@ -124,9 +118,9 @@ def visualize_curve(api_dict, vis_save_dir):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 250, 4000, 2400
|
||||
dpi, width, height = 250, 5000, 2000
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 16, 16
|
||||
LabelSize, LegendFontsize = 28, 28
|
||||
|
||||
def sub_plot_fn(ax, search_space, dataset):
|
||||
max_time = x_axis_s[(dataset, search_space)]
|
||||
@ -137,6 +131,11 @@ def visualize_curve(api_dict, vis_save_dir):
|
||||
ax.set_xlim(0, x_axis_s[(dataset, search_space)])
|
||||
ax.set_ylim(y_min_s[(dataset, search_space)],
|
||||
y_max_s[(dataset, search_space)])
|
||||
for tick in ax.get_xticklabels():
|
||||
tick.set_rotation(25)
|
||||
tick.set_fontsize(LabelSize - 6)
|
||||
for tick in ax.get_yticklabels():
|
||||
tick.set_fontsize(LabelSize - 6)
|
||||
for idx, (alg, xdata) in enumerate(alg2data.items()):
|
||||
accuracies = []
|
||||
for ticket in time_tickets:
|
||||
@ -150,8 +149,8 @@ def visualize_curve(api_dict, vis_save_dir):
|
||||
ax.plot(time_tickets, accuracies, c=xdata['color'], linestyle=xdata['linestyle'], label='{:}'.format(alg))
|
||||
ax.set_xlabel('Estimated wall-clock time', fontsize=LabelSize)
|
||||
ax.set_ylabel('Test accuracy', fontsize=LabelSize)
|
||||
ax.set_title(r'Searching results on {:} for {:}'.format(name2label[dataset], spaces2latex[search_space]),
|
||||
fontsize=LabelSize+4)
|
||||
ax.set_title(r'Results on {:} over {:}'.format(name2label[dataset], spaces2latex[search_space]),
|
||||
fontsize=LabelSize)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
fig, axs = plt.subplots(1, 2, figsize=figsize)
|
||||
@ -165,7 +164,7 @@ def visualize_curve(api_dict, vis_save_dir):
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/nas-algos-vs-h', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/nas-algos-vs-h', help='Folder to save checkpoints and log.')
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
|
@ -11,7 +11,7 @@ import scipy
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict
|
||||
from collections import defaultdict, OrderedDict
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
@ -28,69 +28,103 @@ from models import get_cell_based_tiny_net
|
||||
from nats_bench import create
|
||||
|
||||
|
||||
def visualize_relative_info(api, vis_save_dir, indicator):
|
||||
name2label = {'cifar10': 'CIFAR-10',
|
||||
'cifar100': 'CIFAR-100',
|
||||
'ImageNet16-120': 'ImageNet-16-120'}
|
||||
|
||||
|
||||
def visualize_relative_info(vis_save_dir, search_space, indicator, topk):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
# print ('{:} start to visualize {:} information'.format(time_string(), api))
|
||||
print ('{:} start to visualize {:} with top-{:} information'.format(time_string(), search_space, topk))
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
cache_file_path = vis_save_dir / 'cache-{:}-info.pth'.format(search_space)
|
||||
datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
|
||||
if not cache_file_path.exists():
|
||||
api = create(None, search_space, fast_mode=False, verbose=False)
|
||||
all_infos = OrderedDict()
|
||||
for index in range(len(api)):
|
||||
all_info = OrderedDict()
|
||||
for dataset in datasets:
|
||||
info_less = api.get_more_info(index, dataset, hp='12', is_random=False)
|
||||
info_more = api.get_more_info(index, dataset, hp=api.full_train_epochs, is_random=False)
|
||||
all_info[dataset] = dict(less=info_less['test-accuracy'],
|
||||
more=info_more['test-accuracy'])
|
||||
all_infos[index] = all_info
|
||||
torch.save(all_infos, cache_file_path)
|
||||
print ('{:} save all cache data into {:}'.format(time_string(), cache_file_path))
|
||||
else:
|
||||
api = create(None, search_space, fast_mode=True, verbose=False)
|
||||
all_infos = torch.load(cache_file_path)
|
||||
|
||||
cifar010_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar10', indicator)
|
||||
cifar100_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar100', indicator)
|
||||
imagenet_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('ImageNet16-120', indicator)
|
||||
cifar010_info = torch.load(cifar010_cache_path)
|
||||
cifar100_info = torch.load(cifar100_cache_path)
|
||||
imagenet_info = torch.load(imagenet_cache_path)
|
||||
indexes = list(range(len(cifar010_info['params'])))
|
||||
|
||||
print ('{:} start to visualize relative ranking'.format(time_string()))
|
||||
|
||||
cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info['test_accs'][i])
|
||||
cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info['test_accs'][i])
|
||||
imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info['test_accs'][i])
|
||||
|
||||
cifar100_labels, imagenet_labels = [], []
|
||||
for idx in cifar010_ord_indexes:
|
||||
cifar100_labels.append( cifar100_ord_indexes.index(idx) )
|
||||
imagenet_labels.append( imagenet_ord_indexes.index(idx) )
|
||||
print ('{:} prepare data done.'.format(time_string()))
|
||||
|
||||
dpi, width, height = 200, 1400, 800
|
||||
dpi, width, height = 250, 5000, 1300
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 18, 12
|
||||
resnet_scale, resnet_alpha = 120, 0.5
|
||||
LabelSize, LegendFontsize = 16, 16
|
||||
|
||||
fig = plt.figure(figsize=figsize)
|
||||
ax = fig.add_subplot(111)
|
||||
plt.xlim(min(indexes), max(indexes))
|
||||
plt.ylim(min(indexes), max(indexes))
|
||||
# plt.ylabel('y').set_rotation(30)
|
||||
plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical')
|
||||
plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize)
|
||||
ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8)
|
||||
ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red' , alpha=0.8)
|
||||
ax.scatter(indexes, indexes , marker='o', s=0.5, c='tab:blue' , alpha=0.8)
|
||||
ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10')
|
||||
ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-100')
|
||||
ax.scatter([-1], [-1], marker='*', s=100, c='tab:red' , label='ImageNet-16-120')
|
||||
plt.grid(zorder=0)
|
||||
ax.set_axisbelow(True)
|
||||
plt.legend(loc=0, fontsize=LegendFontsize)
|
||||
ax.set_xlabel('architecture ranking in CIFAR-10', fontsize=LabelSize)
|
||||
ax.set_ylabel('architecture ranking', fontsize=LabelSize)
|
||||
save_path = (vis_save_dir / '{:}-relative-rank.pdf'.format(indicator)).resolve()
|
||||
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
||||
datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
|
||||
|
||||
def sub_plot_fn(ax, dataset, indicator):
|
||||
performances = []
|
||||
# pickup top 10% architectures
|
||||
for _index in range(len(api)):
|
||||
performances.append((all_infos[_index][dataset][indicator], _index))
|
||||
performances = sorted(performances, reverse=True)
|
||||
performances = performances[: int(len(api) * topk * 0.01)]
|
||||
selected_indexes = [x[1] for x in performances]
|
||||
print('{:} plot {:10s} with {:}, {:} architectures'.format(time_string(), dataset, indicator, len(selected_indexes)))
|
||||
standard_scores = []
|
||||
random_scores = []
|
||||
for idx in selected_indexes:
|
||||
standard_scores.append(
|
||||
api.get_more_info(idx, dataset, hp=api.full_train_epochs if indicator == 'more' else '12', is_random=False)['test-accuracy'])
|
||||
random_scores.append(
|
||||
api.get_more_info(idx, dataset, hp=api.full_train_epochs if indicator == 'more' else '12', is_random=True)['test-accuracy'])
|
||||
indexes = list(range(len(selected_indexes)))
|
||||
standard_indexes = sorted(indexes, key=lambda i: standard_scores[i])
|
||||
random_indexes = sorted(indexes, key=lambda i: random_scores[i])
|
||||
random_labels = []
|
||||
for idx in standard_indexes:
|
||||
random_labels.append(random_indexes.index(idx))
|
||||
for tick in ax.get_xticklabels():
|
||||
tick.set_fontsize(LabelSize - 3)
|
||||
for tick in ax.get_yticklabels():
|
||||
tick.set_rotation(25)
|
||||
tick.set_fontsize(LabelSize - 3)
|
||||
ax.set_xlim(0, len(indexes))
|
||||
ax.set_ylim(0, len(indexes))
|
||||
ax.set_yticks(np.arange(min(indexes), max(indexes), max(indexes)//3))
|
||||
ax.set_xticks(np.arange(min(indexes), max(indexes), max(indexes)//5))
|
||||
ax.scatter(indexes, random_labels, marker='^', s=0.5, c='tab:green', alpha=0.8)
|
||||
ax.scatter(indexes, indexes , marker='o', s=0.5, c='tab:blue' , alpha=0.8)
|
||||
ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='Average Over Multi-Trials')
|
||||
ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='Randomly Selected Trial')
|
||||
|
||||
coef, p = scipy.stats.kendalltau(standard_scores, random_scores)
|
||||
ax.set_xlabel('architecture ranking in {:}'.format(name2label[dataset]), fontsize=LabelSize)
|
||||
if dataset == 'cifar10':
|
||||
ax.set_ylabel('architecture ranking', fontsize=LabelSize)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
return coef
|
||||
|
||||
for dataset, ax in zip(datasets, axs):
|
||||
rank_coef = sub_plot_fn(ax, dataset, indicator)
|
||||
print('sub-plot {:} on {:} done, the ranking coefficient is {:.4f}.'.format(dataset, search_space, rank_coef))
|
||||
|
||||
save_path = (vis_save_dir / '{:}-rank-{:}-top{:}.pdf'.format(search_space, indicator, topk)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf')
|
||||
save_path = (vis_save_dir / '{:}-relative-rank.png'.format(indicator)).resolve()
|
||||
save_path = (vis_save_dir / '{:}-rank-{:}-top{:}.png'.format(search_space, indicator, topk)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
||||
print ('{:} save into {:}'.format(time_string(), save_path))
|
||||
print('Save into {:}'.format(save_path))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/rank-stability', help='Folder to save checkpoints and log.')
|
||||
# use for train the model
|
||||
args = parser.parse_args()
|
||||
|
||||
to_save_dir = Path(args.save_dir)
|
||||
|
||||
# Figure 2
|
||||
visualize_relative_info(None, to_save_dir, 'tss')
|
||||
visualize_relative_info(None, to_save_dir, 'sss')
|
||||
for topk in [1, 5, 10, 20]:
|
||||
visualize_relative_info(to_save_dir, 'tss', 'more', topk)
|
||||
visualize_relative_info(to_save_dir, 'sss', 'less', topk)
|
||||
print ('{:} : complete running this file : {:}'.format(time_string(), __file__))
|
||||
|
Loading…
Reference in New Issue
Block a user