update NAS-Bench-102
This commit is contained in:
parent
1d5e8debad
commit
d791622b63
@ -16,7 +16,8 @@ Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`.
|
||||
|
||||
The benchmark file of NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w).
|
||||
You can move it to anywhere you want and send its path to our API for initialization.
|
||||
- v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file.
|
||||
- v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial.
|
||||
- v1.0: The full data of each architecture can be download from [Google Drive](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights.
|
||||
|
||||
The training and evaluation data used in NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ).
|
||||
It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-102 or similar NAS datasets or training models by yourself, you need these data.
|
||||
@ -108,8 +109,12 @@ print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True)) # print loss
|
||||
`NASBench102API` is the topest level api. Please see the following usages:
|
||||
```
|
||||
from nas_102_api import NASBench102API as API
|
||||
api = API('NAS-Bench-102-v1_0-e61699.pth')
|
||||
api = API('NAS-Bench-102-v1_0-e61699.pth') # This will load all the information of NAS-Bench-102 except the trained weights
|
||||
api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-102-v1_0-e61699.pth')) # The same as the above line while I usually save NAS-Bench-102-v1_0-e61699.pth in ~/.torch/.
|
||||
api.show(-1) # show info of all architectures
|
||||
api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-102-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights
|
||||
|
||||
weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights.
|
||||
```
|
||||
|
||||
|
||||
|
84
exps/NAS-Bench-102/check.py
Normal file
84
exps/NAS-Bench-102/check.py
Normal file
@ -0,0 +1,84 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
# python exps/NAS-Bench-102/check.py --base_save_dir
|
||||
##################################################
|
||||
import os, sys, time, argparse, collections
|
||||
from shutil import copyfile
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from pathlib import Path
|
||||
from collections import defaultdict
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
|
||||
|
||||
def check_files(save_dir, meta_file, basestr):
|
||||
meta_infos = torch.load(meta_file, map_location='cpu')
|
||||
meta_archs = meta_infos['archs']
|
||||
meta_num_archs = meta_infos['total']
|
||||
meta_max_node = meta_infos['max_node']
|
||||
assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs))
|
||||
|
||||
sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr))))
|
||||
print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs)))
|
||||
|
||||
subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0
|
||||
num_seeds = defaultdict(lambda: 0)
|
||||
for index, sub_dir in enumerate(sub_model_dirs):
|
||||
xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth'))
|
||||
#xcheckpoints = list(sub_dir.glob('arch-*-seed-0777.pth')) + list(sub_dir.glob('arch-*-seed-0888.pth')) + list(sub_dir.glob('arch-*-seed-0999.pth'))
|
||||
arch_indexes = set()
|
||||
for checkpoint in xcheckpoints:
|
||||
temp_names = checkpoint.name.split('-')
|
||||
assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name)
|
||||
arch_indexes.add( temp_names[1] )
|
||||
subdir2archs[sub_dir] = sorted(list(arch_indexes))
|
||||
num_evaluated_arch += len(arch_indexes)
|
||||
# count number of seeds for each architecture
|
||||
for arch_index in arch_indexes:
|
||||
num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1
|
||||
print('There are {:5d} architectures that have been evaluated ({:} in total, {:} ckps in total).'.format(num_evaluated_arch, meta_num_archs, sum(k*v for k, v in num_seeds.items())))
|
||||
for key in sorted( list( num_seeds.keys() ) ): print ('There are {:5d} architectures that are evaluated {:} times.'.format(num_seeds[key], key))
|
||||
|
||||
dir2ckps, dir2ckp_exists = dict(), dict()
|
||||
start_time, epoch_time = time.time(), AverageMeter()
|
||||
for IDX, (sub_dir, arch_indexes) in enumerate(subdir2archs.items()):
|
||||
seeds = [777, 888, 999]
|
||||
numrs = defaultdict(lambda: 0)
|
||||
all_checkpoints, all_ckp_exists = [], []
|
||||
for arch_index in arch_indexes:
|
||||
checkpoints = ['arch-{:}-seed-{:04d}.pth'.format(arch_index, seed) for seed in seeds]
|
||||
ckp_exists = [(sub_dir/x).exists() for x in checkpoints]
|
||||
arch_index = int(arch_index)
|
||||
assert 0 <= arch_index < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index)
|
||||
all_checkpoints += checkpoints
|
||||
all_ckp_exists += ckp_exists
|
||||
numrs[sum(ckp_exists)] += 1
|
||||
dir2ckps[ str(sub_dir) ] = all_checkpoints
|
||||
dir2ckp_exists[ str(sub_dir) ] = all_ckp_exists
|
||||
# measure time
|
||||
epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
numrstr = ', '.join( ['{:}: {:03d}'.format(x, numrs[x]) for x in sorted(numrs.keys())] )
|
||||
print('{:} load [{:2d}/{:2d}] [{:03d} archs] [{:04d}->{:04d} ckps] {:} done, need {:}. {:}'.format(time_string(), IDX+1, len(subdir2archs), len(arch_indexes), len(all_checkpoints), sum(all_ckp_exists), sub_dir, convert_secs2time(epoch_time.avg * (len(subdir2archs)-IDX-1), True), numrstr))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
parser = argparse.ArgumentParser(description='NAS Benchmark 102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-102-4', help='The base-name of folder to save checkpoints and log.')
|
||||
parser.add_argument('--max_node', type=int, default=4, help='The maximum node in a cell.')
|
||||
parser.add_argument('--channel', type=int, default=16, help='The number of channels.')
|
||||
parser.add_argument('--num_cells', type=int, default=5, help='The number of cells in one stage.')
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path( args.base_save_dir )
|
||||
meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node)
|
||||
assert save_dir.exists(), 'invalid save dir path : {:}'.format(save_dir)
|
||||
assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path)
|
||||
print ('check NAS-Bench-102 in {:}'.format(save_dir))
|
||||
|
||||
basestr = 'C{:}-N{:}'.format(args.channel, args.num_cells)
|
||||
check_files(save_dir, meta_path, basestr)
|
@ -78,6 +78,16 @@ class NASBench102API(object):
|
||||
else : arch_index = -1
|
||||
else: arch_index = -1
|
||||
return arch_index
|
||||
|
||||
def reload(self, archive_root, index):
|
||||
assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
|
||||
xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(index))
|
||||
assert 0 <= index < len(self.meta_archs), 'invalid index of {:}'.format(index)
|
||||
assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path)
|
||||
xdata = torch.load(xfile_path)
|
||||
assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path)
|
||||
self.arch2infos_less[index] = ArchResults.create_from_state_dict( xdata['less'] )
|
||||
self.arch2infos_full[index] = ArchResults.create_from_state_dict( xdata['full'] )
|
||||
|
||||
def query_by_arch(self, arch, use_12epochs_result=False):
|
||||
if isinstance(arch, int):
|
||||
@ -125,10 +135,18 @@ class NASBench102API(object):
|
||||
best_index, highest_accuracy = idx, accuracy
|
||||
return best_index
|
||||
|
||||
# return the topology structure of the `index`-th architecture
|
||||
def arch(self, index):
|
||||
assert 0 <= index < len(self.meta_archs), 'invalid index : {:} vs. {:}.'.format(index, len(self.meta_archs))
|
||||
return copy.deepcopy(self.meta_archs[index])
|
||||
|
||||
# obtain the trained weights of the `index`-th architecture on `dataset` with the seed of `seed`
|
||||
def get_net_param(self, index, dataset, seed, use_12epochs_result=False):
|
||||
if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
|
||||
else : basestr, arch2infos = '200epochs', self.arch2infos_full
|
||||
archresult = arch2infos[index]
|
||||
return archresult.get_net_param(dataset, seed)
|
||||
|
||||
def get_more_info(self, index, dataset, use_12epochs_result=False):
|
||||
if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
|
||||
else : basestr, arch2infos = '200epochs', self.arch2infos_full
|
||||
@ -238,6 +256,13 @@ class ArchResults(object):
|
||||
def get_dataset_names(self):
|
||||
return list(self.dataset_seed.keys())
|
||||
|
||||
def get_net_param(self, dataset, seed=None):
|
||||
if seed is None:
|
||||
x_seeds = self.dataset_seed[dataset]
|
||||
return {seed: self.all_results[(dataset, seed)].get_net_param() for seed in x_seeds}
|
||||
else:
|
||||
return self.all_results[(dataset, seed)].get_net_param()
|
||||
|
||||
def query(self, dataset, seed=None):
|
||||
if seed is None:
|
||||
x_seeds = self.dataset_seed[dataset]
|
||||
|
Loading…
Reference in New Issue
Block a user