update vis
This commit is contained in:
		| @@ -18,6 +18,7 @@ The benchmark file of NAS-Bench-102 can be downloaded from [Google Drive](https: | |||||||
| You can move it to anywhere you want and send its path to our API for initialization. | You can move it to anywhere you want and send its path to our API for initialization. | ||||||
| - v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial. | - v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial. | ||||||
| - v1.0: The full data of each architecture can be download from [Google Drive](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights. | - v1.0: The full data of each architecture can be download from [Google Drive](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights. | ||||||
|  | - v1.0: Checkpoints for 3 runs of each baseline NAS algorithm are provided in [Google Drive](https://drive.google.com/open?id=1eAgLZQAViP3r6dA0_ZOOGG9zPLXhGwXi). | ||||||
|  |  | ||||||
| The training and evaluation data used in NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ). | The training and evaluation data used in NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ). | ||||||
| It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-102 or similar NAS datasets or training models by yourself, you need these data. | It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-102 or similar NAS datasets or training models by yourself, you need these data. | ||||||
|   | |||||||
| @@ -464,18 +464,17 @@ def just_show(api): | |||||||
|     print ('[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}'.format(dataset, metric_on_set, arch_index, highest_acc)) |     print ('[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}'.format(dataset, metric_on_set, arch_index, highest_acc)) | ||||||
|  |  | ||||||
|  |  | ||||||
| def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims): | def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_maxs): | ||||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] |   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||||
|   dpi, width, height = 300, 3400, 2600 |   dpi, width, height = 300, 3400, 2600 | ||||||
|   LabelSize, LegendFontsize = 28, 28 |   LabelSize, LegendFontsize = 28, 28 | ||||||
|   figsize = width / float(dpi), height / float(dpi) |   figsize = width / float(dpi), height / float(dpi) | ||||||
|   fig = plt.figure(figsize=figsize) |   fig = plt.figure(figsize=figsize) | ||||||
|   x_maxs = 250 |   #x_maxs = 250 | ||||||
|   x_axis = np.arange(0, x_maxs) |   plt.xlim(0, x_maxs+1) | ||||||
|   plt.xlim(0, x_maxs) |  | ||||||
|   plt.ylim(y_lims[0], y_lims[1]) |   plt.ylim(y_lims[0], y_lims[1]) | ||||||
|   interval_x, interval_y = x_maxs // 5, y_lims[2] |   interval_x, interval_y = x_maxs // 5, y_lims[2] | ||||||
|   plt.xticks(np.arange(0, x_maxs, interval_x), fontsize=LegendFontsize) |   plt.xticks(np.arange(0, x_maxs+1, interval_x), fontsize=LegendFontsize) | ||||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) |   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||||
|   plt.grid() |   plt.grid() | ||||||
|   plt.xlabel('The searching epoch', fontsize=LabelSize) |   plt.xlabel('The searching epoch', fontsize=LabelSize) | ||||||
| @@ -505,17 +504,24 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims): | |||||||
|       xresults.append( metrics['accuracy'] ) |       xresults.append( metrics['accuracy'] ) | ||||||
|     return xresults |     return xresults | ||||||
|  |  | ||||||
|   for idx, method in enumerate(['RSPS', 'GDAS', 'SETN', 'ENAS']): |   if x_maxs == 50: | ||||||
|  |     xox, xxxstrs = 'v2', ['DARTS-V1', 'DARTS-V2'] | ||||||
|  |   elif x_maxs == 250: | ||||||
|  |     xox, xxxstrs = 'v1', ['RSPS', 'GDAS', 'SETN', 'ENAS'] | ||||||
|  |   else: raise ValueError('invalid x_maxs={:}'.format(x_maxs)) | ||||||
|  |  | ||||||
|  |   for idx, method in enumerate(xxxstrs): | ||||||
|     xkey = method |     xkey = method | ||||||
|     all_paths = [ '{:}/seed-{:}-basic.pth'.format(xpaths[xkey], seed) for seed in xseeds[xkey] ] |     all_paths = [ '{:}/seed-{:}-basic.pth'.format(xpaths[xkey], seed) for seed in xseeds[xkey] ] | ||||||
|     all_datas = [torch.load(xpath) for xpath in all_paths] |     all_datas = [torch.load(xpath, map_location='cpu') for xpath in all_paths] | ||||||
|     accyss = [get_accs(xdatas) for xdatas in all_datas] |     accyss = [get_accs(xdatas) for xdatas in all_datas] | ||||||
|     accyss = np.array( accyss ) |     accyss = np.array( accyss ) | ||||||
|     epochs = list(range(accyss.shape[1])) |     epochs = list(range(accyss.shape[1])) | ||||||
|     plt.plot(epochs, [accyss[:,i].mean() for i in epochs], color=color_set[idx], linestyle='-', label='{:}'.format(method), lw=2) |     plt.plot(epochs, [accyss[:,i].mean() for i in epochs], color=color_set[idx], linestyle='-', label='{:}'.format(method), lw=2) | ||||||
|     plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color_set[idx]) |     plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color_set[idx]) | ||||||
|   plt.legend(loc=4, fontsize=LegendFontsize) |   #plt.legend(loc=4, fontsize=LegendFontsize) | ||||||
|   save_path = vis_save_dir / '{:}-{:}-{:}'.format(dataset, subset, file_name) |   plt.legend(loc=0, fontsize=LegendFontsize) | ||||||
|  |   save_path = vis_save_dir / '{:}-{:}-{:}-{:}'.format(xox, dataset, subset, file_name) | ||||||
|   print('save figure into {:}\n'.format(save_path)) |   print('save figure into {:}\n'.format(save_path)) | ||||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') |   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||||
|  |  | ||||||
| @@ -540,7 +546,13 @@ if __name__ == '__main__': | |||||||
|   #visualize_relative_ranking(vis_save_dir) |   #visualize_relative_ranking(vis_save_dir) | ||||||
|  |  | ||||||
|   api = API(args.api_path) |   api = API(args.api_path) | ||||||
|   show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (5,95,10)) |   for x_maxs in [50, 250]: | ||||||
|  |     show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||||
|  |     show_nas_sharing_w(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||||
|  |     show_nas_sharing_w(api, 'cifar100'      , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||||
|  |     show_nas_sharing_w(api, 'cifar100'      , 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||||
|  |     show_nas_sharing_w(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||||
|  |     show_nas_sharing_w(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||||
|   """ |   """ | ||||||
|   just_show(api) |   just_show(api) | ||||||
|   plot_results_nas(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (85,95, 1)) |   plot_results_nas(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (85,95, 1)) | ||||||
|   | |||||||
| @@ -1,11 +1,12 @@ | |||||||
| # python ./exps/vis/test.py | # python ./exps/vis/test.py | ||||||
| import os, sys | import os, sys, random | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| import torch | import torch | ||||||
| import numpy as np | import numpy as np | ||||||
| from collections import OrderedDict | from collections import OrderedDict | ||||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  | from graphviz import Digraph | ||||||
|  |  | ||||||
|  |  | ||||||
| def test_nas_api(): | def test_nas_api(): | ||||||
| @@ -23,5 +24,35 @@ def test_nas_api(): | |||||||
|     print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True)) |     print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True)) | ||||||
|     print(archRes.query('cifar10-valid', 777)) |     print(archRes.query('cifar10-valid', 777)) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | OPS    = ['skip-connect', 'conv-1x1', 'conv-3x3', 'pool-3x3'] | ||||||
|  | COLORS = ['chartreuse'  , 'cyan'    , 'navyblue', 'chocolate1'] | ||||||
|  |  | ||||||
|  | def plot(filename): | ||||||
|  |   g = Digraph( | ||||||
|  |       format='png', | ||||||
|  |       edge_attr=dict(fontsize='20', fontname="times"), | ||||||
|  |       node_attr=dict(style='filled', shape='rect', align='center', fontsize='20', height='0.5', width='0.5', penwidth='2', fontname="times"), | ||||||
|  |       engine='dot') | ||||||
|  |   g.body.extend(['rankdir=LR']) | ||||||
|  |  | ||||||
|  |   steps = 5 | ||||||
|  |   for i in range(0, steps): | ||||||
|  |     if i == 0: | ||||||
|  |       g.node(str(i), fillcolor='darkseagreen2') | ||||||
|  |     elif i+1 == steps: | ||||||
|  |       g.node(str(i), fillcolor='palegoldenrod') | ||||||
|  |     else: g.node(str(i), fillcolor='lightblue') | ||||||
|  |  | ||||||
|  |   for i in range(1, steps): | ||||||
|  |     for xin in range(i): | ||||||
|  |       op_i = random.randint(0, len(OPS)-1) | ||||||
|  |       #g.edge(str(xin), str(i), label=OPS[op_i], fillcolor=COLORS[op_i]) | ||||||
|  |       g.edge(str(xin), str(i), label=OPS[op_i], color=COLORS[op_i], fillcolor=COLORS[op_i]) | ||||||
|  |       #import pdb; pdb.set_trace() | ||||||
|  |   g.render(filename, cleanup=True, view=False) | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|   test_nas_api() |   test_nas_api() | ||||||
|  |   for i in range(200): plot('{:04d}'.format(i)) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user