diff --git a/exps/algos-v2/reinforce.py b/exps/algos-v2/reinforce.py index 21ec7f2..d77b1b8 100644 --- a/exps/algos-v2/reinforce.py +++ b/exps/algos-v2/reinforce.py @@ -3,12 +3,12 @@ ##################################################################################################### # modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py # ##################################################################################################### -# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.001 -# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.001 -# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.001 -# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.001 -# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.001 -# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.001 +# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.01 +# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.01 +# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.01 +# python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.01 +# python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.01 +# python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.01 ##################################################################################################### import os, sys, time, glob, random, argparse import numpy as np, collections diff --git a/exps/algos-v2/run-all.sh b/exps/algos-v2/run-all.sh index 53cf169..535135b 100644 --- a/exps/algos-v2/run-all.sh +++ b/exps/algos-v2/run-all.sh @@ -11,7 +11,7 @@ for dataset in ${datasets} do for search_space in ${search_spaces} do - python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001 + python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.01 python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space} python ./exps/algos-v2/bohb.py --dataset ${dataset} --search_space ${search_space} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 diff --git a/exps/algos-v2/search-cell.py b/exps/algos-v2/search-cell.py index 1e3465b..e637a8e 100644 --- a/exps/algos-v2/search-cell.py +++ b/exps/algos-v2/search-cell.py @@ -399,6 +399,9 @@ def main(xargs): logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) network.set_drop_path(float(epoch+1) / total_epoch, xargs.drop_path_rate) + if xargs.algo == 'gdas': + network.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) ) + logger.log('[Reset tau as : {:}'.format(network.tau)) search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, xargs.algo, logger) search_time.update(time.time() - start_time) @@ -480,6 +483,9 @@ if __name__ == '__main__': parser.add_argument('--dataset' , type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') parser.add_argument('--search_space', type=str, default='tss', choices=['tss'], help='The search space name.') parser.add_argument('--algo' , type=str, choices=['darts-v1', 'darts-v2', 'gdas', 'setn', 'random', 'enas'], help='The search space name.') + # FOR GDAS + parser.add_argument('--tau_min', type=float, default=0.1, help='The minimum tau for Gumbel Softmax.') + parser.add_argument('--tau_max', type=float, default=10, help='The maximum tau for Gumbel Softmax.') # channels and number-of-cells parser.add_argument('--max_nodes' , type=int, default=4, help='The maximum number of nodes.') parser.add_argument('--channel' , type=int, default=16, help='The number of channels.') diff --git a/exps/experimental/vis-bench-algos.py b/exps/experimental/vis-bench-algos.py index b9adcf2..927582b 100644 --- a/exps/experimental/vis-bench-algos.py +++ b/exps/experimental/vis-bench-algos.py @@ -30,7 +30,7 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): ss_dir = '{:}-{:}'.format(root_dir, search_space) alg2name, alg2path = OrderedDict(), OrderedDict() alg2name['REA'] = 'R-EA-SS3' - alg2name['REINFORCE'] = 'REINFORCE-0.001' + alg2name['REINFORCE'] = 'REINFORCE-0.01' alg2name['RANDOM'] = 'RANDOM' alg2name['BOHB'] = 'BOHB' for alg, name in alg2name.items(): diff --git a/exps/experimental/vis-bench-ws.py b/exps/experimental/vis-bench-ws.py new file mode 100644 index 0000000..db80b55 --- /dev/null +++ b/exps/experimental/vis-bench-ws.py @@ -0,0 +1,126 @@ +############################################################### +# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # +############################################################### +# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 # +############################################################### +# Usage: python exps/experimental/vis-bench-ws.py --search_space tss +# Usage: python exps/experimental/vis-bench-ws.py --search_space sss +############################################################### +import os, gc, sys, time, torch, argparse +import numpy as np +from typing import List, Text, Dict, Any +from shutil import copyfile +from collections import defaultdict, OrderedDict +from copy import deepcopy +from pathlib import Path +import matplotlib +import seaborn as sns +matplotlib.use('agg') +import matplotlib.pyplot as plt +import matplotlib.ticker as ticker + +lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() +if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) +from config_utils import dict2config, load_config +from nas_201_api import NASBench201API, NASBench301API +from log_utils import time_string + + +def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): + ss_dir = '{:}-{:}'.format(root_dir, search_space) + alg2name, alg2path = OrderedDict(), OrderedDict() + seeds = [777] + alg2name['GDAS'] = 'gdas-affine1_BN0-None' + """ + alg2name['DARTS (1st)'] = 'darts-v1-affine1_BN0-None' + alg2name['DARTS (2nd)'] = 'darts-v2-affine1_BN0-None' + alg2name['SETN'] = 'setn-affine1_BN0-None' + alg2name['RSPS'] = 'random-affine1_BN0-None' + """ + for alg, name in alg2name.items(): + alg2path[alg] = os.path.join(ss_dir, dataset, name, 'seed-{:}-last-info.pth') + alg2data = OrderedDict() + for alg, path in alg2path.items(): + alg2data[alg] = [] + for seed in seeds: + xpath = path.format(seed) + assert os.path.isfile(xpath), 'invalid path : {:}'.format(xpath) + data = torch.load(xpath, map_location=torch.device('cpu')) + data = torch.load(data['last_checkpoint'], map_location=torch.device('cpu')) + alg2data[alg].append(data['genotypes']) + return alg2data + + +y_min_s = {('cifar10', 'tss'): 90, + ('cifar10', 'sss'): 92, + ('cifar100', 'tss'): 65, + ('cifar100', 'sss'): 65, + ('ImageNet16-120', 'tss'): 36, + ('ImageNet16-120', 'sss'): 40} + +y_max_s = {('cifar10', 'tss'): 94.5, + ('cifar10', 'sss'): 93.3, + ('cifar100', 'tss'): 72, + ('cifar100', 'sss'): 70, + ('ImageNet16-120', 'tss'): 44, + ('ImageNet16-120', 'sss'): 46} + +def visualize_curve(api, vis_save_dir, search_space): + vis_save_dir = vis_save_dir.resolve() + vis_save_dir.mkdir(parents=True, exist_ok=True) + + dpi, width, height = 250, 5200, 1400 + figsize = width / float(dpi), height / float(dpi) + LabelSize, LegendFontsize = 16, 16 + + def sub_plot_fn(ax, dataset): + alg2data = fetch_data(search_space=search_space, dataset=dataset) + alg2accuracies = OrderedDict() + epochs = 20 + colors = ['b', 'g', 'c', 'm', 'y'] + ax.set_xlim(0, epochs) + # ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)]) + for idx, (alg, data) in enumerate(alg2data.items()): + print('plot alg : {:}'.format(alg)) + xs, accuracies = [], [] + for iepoch in range(epochs+1): + structures, accs = [_[iepoch-1] for _ in data], [] + for structure in structures: + info = api.get_more_info(structure, dataset=dataset, hp=90 if isinstance(api, NASBench301API) else 200, is_random=False) + accs.append(info['test-accuracy']) + accuracies.append(sum(accs)/len(accs)) + xs.append(iepoch) + alg2accuracies[alg] = accuracies + ax.plot(xs, accuracies, c=colors[idx], label='{:}'.format(alg)) + ax.set_xlabel('The searching epoch', fontsize=LabelSize) + ax.set_ylabel('Test accuracy on {:}'.format(dataset), fontsize=LabelSize) + ax.set_title('Searching results on {:}'.format(dataset), fontsize=LabelSize+4) + ax.legend(loc=4, fontsize=LegendFontsize) + + fig, axs = plt.subplots(1, 3, figsize=figsize) + datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] + for dataset, ax in zip(datasets, axs): + sub_plot_fn(ax, dataset) + print('sub-plot {:} on {:} done.'.format(dataset, search_space)) + save_path = (vis_save_dir / '{:}-ws-curve.png'.format(search_space)).resolve() + fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') + print ('{:} save into {:}'.format(time_string(), save_path)) + plt.close('all') + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.') + parser.add_argument('--search_space', type=str, default='tss', choices=['tss', 'sss'], help='Choose the search space.') + args = parser.parse_args() + + save_dir = Path(args.save_dir) + alg2data = fetch_data(search_space='tss', dataset='cifar10') + + if args.search_space == 'tss': + api = NASBench201API(verbose=False) + elif args.search_space == 'sss': + api = NASBench301API(verbose=False) + else: + raise ValueError('Invalid search space : {:}'.format(args.search_space)) + visualize_curve(api, save_dir, args.search_space)