This commit is contained in:
D-X-Y 2021-03-15 02:58:34 +00:00
parent 1c947f26c7
commit e169aabe77

View File

@ -4,8 +4,7 @@
from __future__ import division
from __future__ import print_function
import os
import math
import os, math, random
from collections import OrderedDict
import numpy as np
import pandas as pd
@ -37,7 +36,7 @@ from qlib.data.dataset import DatasetH
from qlib.data.dataset.handler import DataHandlerLP
default_net_config = dict(d_feat=6, hidden_size=48, depth=5, pos_drop=0.1)
default_net_config = dict(d_feat=6, embed_dim=48, depth=5, num_heads=4, mlp_ratio=4.0, qkv_bias=True, pos_drop=0.1)
default_opt_config = dict(
epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4
@ -50,7 +49,7 @@ class QuantTransformer(Model):
def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs):
# Set logger.
self.logger = get_module_logger("QuantTransformer")
self.logger.info("QuantTransformer pytorch version...")
self.logger.info("QuantTransformer PyTorch version...")
# set hyper-parameters.
self.net_config = net_config or default_net_config
@ -75,12 +74,16 @@ class QuantTransformer(Model):
)
if self.seed is not None:
random.seed(self.seed)
np.random.seed(self.seed)
torch.manual_seed(self.seed)
if self.use_gpu:
torch.cuda.manual_seed(self.seed)
torch.cuda.manual_seed_all(self.seed)
self.model = TransformerModel(
d_feat=self.net_config["d_feat"],
embed_dim=self.net_config["hidden_size"],
embed_dim=self.net_config["embed_dim"],
depth=self.net_config["depth"],
pos_drop=self.net_config["pos_drop"],
)
@ -99,7 +102,7 @@ class QuantTransformer(Model):
@property
def use_gpu(self):
self.device == torch.device("cpu")
return self.device != torch.device("cpu")
def loss_fn(self, pred, label):
mask = ~torch.isnan(label)
@ -176,7 +179,7 @@ class QuantTransformer(Model):
_prepare_loader(test_dataset, False),
)
save_path = get_or_create_path(save_path)
save_path = get_or_create_path(save_path, return_dir=True)
self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_path))
def _internal_test(ckp_epoch=None, results_dict=None):
@ -286,11 +289,11 @@ class QuantTransformer(Model):
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or math.sqrt(head_dim)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
@ -314,6 +317,7 @@ class Attention(nn.Module):
class Block(nn.Module):
def __init__(
self,
dim,
@ -345,6 +349,7 @@ class Block(nn.Module):
class SimpleEmbed(nn.Module):
def __init__(self, d_feat, embed_dim):
super(SimpleEmbed, self).__init__()
self.d_feat = d_feat
@ -361,18 +366,19 @@ class SimpleEmbed(nn.Module):
class TransformerModel(nn.Module):
def __init__(
self,
d_feat: int,
d_feat: int = 6,
embed_dim: int = 64,
depth: int = 4,
num_heads: int = 4,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
qk_scale: Optional[float] = None,
pos_drop=0.0,
mlp_drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=None,
pos_drop: float = 0.0,
mlp_drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: Optional[nn.Module] = None,
max_seq_len: int = 65,
):
"""
Args:
@ -397,7 +403,7 @@ class TransformerModel(nn.Module):
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_drop)
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList(