Updates
This commit is contained in:
parent
1c947f26c7
commit
e169aabe77
@ -4,8 +4,7 @@
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import math
|
||||
import os, math, random
|
||||
from collections import OrderedDict
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -37,7 +36,7 @@ from qlib.data.dataset import DatasetH
|
||||
from qlib.data.dataset.handler import DataHandlerLP
|
||||
|
||||
|
||||
default_net_config = dict(d_feat=6, hidden_size=48, depth=5, pos_drop=0.1)
|
||||
default_net_config = dict(d_feat=6, embed_dim=48, depth=5, num_heads=4, mlp_ratio=4.0, qkv_bias=True, pos_drop=0.1)
|
||||
|
||||
default_opt_config = dict(
|
||||
epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4
|
||||
@ -50,7 +49,7 @@ class QuantTransformer(Model):
|
||||
def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs):
|
||||
# Set logger.
|
||||
self.logger = get_module_logger("QuantTransformer")
|
||||
self.logger.info("QuantTransformer pytorch version...")
|
||||
self.logger.info("QuantTransformer PyTorch version...")
|
||||
|
||||
# set hyper-parameters.
|
||||
self.net_config = net_config or default_net_config
|
||||
@ -75,12 +74,16 @@ class QuantTransformer(Model):
|
||||
)
|
||||
|
||||
if self.seed is not None:
|
||||
random.seed(self.seed)
|
||||
np.random.seed(self.seed)
|
||||
torch.manual_seed(self.seed)
|
||||
if self.use_gpu:
|
||||
torch.cuda.manual_seed(self.seed)
|
||||
torch.cuda.manual_seed_all(self.seed)
|
||||
|
||||
self.model = TransformerModel(
|
||||
d_feat=self.net_config["d_feat"],
|
||||
embed_dim=self.net_config["hidden_size"],
|
||||
embed_dim=self.net_config["embed_dim"],
|
||||
depth=self.net_config["depth"],
|
||||
pos_drop=self.net_config["pos_drop"],
|
||||
)
|
||||
@ -99,7 +102,7 @@ class QuantTransformer(Model):
|
||||
|
||||
@property
|
||||
def use_gpu(self):
|
||||
self.device == torch.device("cpu")
|
||||
return self.device != torch.device("cpu")
|
||||
|
||||
def loss_fn(self, pred, label):
|
||||
mask = ~torch.isnan(label)
|
||||
@ -176,7 +179,7 @@ class QuantTransformer(Model):
|
||||
_prepare_loader(test_dataset, False),
|
||||
)
|
||||
|
||||
save_path = get_or_create_path(save_path)
|
||||
save_path = get_or_create_path(save_path, return_dir=True)
|
||||
self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_path))
|
||||
|
||||
def _internal_test(ckp_epoch=None, results_dict=None):
|
||||
@ -286,11 +289,11 @@ class QuantTransformer(Model):
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
|
||||
super(Attention, self).__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or math.sqrt(head_dim)
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
@ -314,6 +317,7 @@ class Attention(nn.Module):
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
@ -345,6 +349,7 @@ class Block(nn.Module):
|
||||
|
||||
|
||||
class SimpleEmbed(nn.Module):
|
||||
|
||||
def __init__(self, d_feat, embed_dim):
|
||||
super(SimpleEmbed, self).__init__()
|
||||
self.d_feat = d_feat
|
||||
@ -361,18 +366,19 @@ class SimpleEmbed(nn.Module):
|
||||
class TransformerModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_feat: int,
|
||||
d_feat: int = 6,
|
||||
embed_dim: int = 64,
|
||||
depth: int = 4,
|
||||
num_heads: int = 4,
|
||||
mlp_ratio: float = 4.0,
|
||||
qkv_bias: bool = True,
|
||||
qk_scale: Optional[float] = None,
|
||||
pos_drop=0.0,
|
||||
mlp_drop_rate=0.0,
|
||||
attn_drop_rate=0.0,
|
||||
drop_path_rate=0.0,
|
||||
norm_layer=None,
|
||||
pos_drop: float = 0.0,
|
||||
mlp_drop_rate: float = 0.0,
|
||||
attn_drop_rate: float = 0.0,
|
||||
drop_path_rate: float = 0.0,
|
||||
norm_layer: Optional[nn.Module] = None,
|
||||
max_seq_len: int = 65,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@ -397,7 +403,7 @@ class TransformerModel(nn.Module):
|
||||
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_drop)
|
||||
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop)
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
self.blocks = nn.ModuleList(
|
||||
|
Loading…
Reference in New Issue
Block a user