diff --git a/lib/trade_models/quant_transformer.py b/lib/trade_models/quant_transformer.py
index 7e94028..c8fbc86 100755
--- a/lib/trade_models/quant_transformer.py
+++ b/lib/trade_models/quant_transformer.py
@@ -4,8 +4,7 @@
 from __future__ import division
 from __future__ import print_function
 
-import os
-import math
+import os, math, random
 from collections import OrderedDict
 import numpy as np
 import pandas as pd
@@ -37,7 +36,7 @@ from qlib.data.dataset import DatasetH
 from qlib.data.dataset.handler import DataHandlerLP
 
 
-default_net_config = dict(d_feat=6, hidden_size=48, depth=5, pos_drop=0.1)
+default_net_config = dict(d_feat=6, embed_dim=48, depth=5, num_heads=4, mlp_ratio=4.0, qkv_bias=True, pos_drop=0.1)
 
 default_opt_config = dict(
     epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4
@@ -50,7 +49,7 @@ class QuantTransformer(Model):
     def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs):
         # Set logger.
         self.logger = get_module_logger("QuantTransformer")
-        self.logger.info("QuantTransformer pytorch version...")
+        self.logger.info("QuantTransformer PyTorch version...")
 
         # set hyper-parameters.
         self.net_config = net_config or default_net_config
@@ -75,12 +74,16 @@ class QuantTransformer(Model):
         )
 
         if self.seed is not None:
+            random.seed(self.seed)
             np.random.seed(self.seed)
             torch.manual_seed(self.seed)
+            if self.use_gpu:
+                torch.cuda.manual_seed(self.seed)
+                torch.cuda.manual_seed_all(self.seed)
 
         self.model = TransformerModel(
             d_feat=self.net_config["d_feat"],
-            embed_dim=self.net_config["hidden_size"],
+            embed_dim=self.net_config["embed_dim"],
             depth=self.net_config["depth"],
             pos_drop=self.net_config["pos_drop"],
         )
@@ -99,7 +102,7 @@ class QuantTransformer(Model):
 
     @property
     def use_gpu(self):
-        self.device == torch.device("cpu")
+        return self.device != torch.device("cpu")
 
     def loss_fn(self, pred, label):
         mask = ~torch.isnan(label)
@@ -176,7 +179,7 @@ class QuantTransformer(Model):
             _prepare_loader(test_dataset, False),
         )
 
-        save_path = get_or_create_path(save_path)
+        save_path = get_or_create_path(save_path, return_dir=True)
         self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_path))
 
         def _internal_test(ckp_epoch=None, results_dict=None):
@@ -286,11 +289,11 @@ class QuantTransformer(Model):
 
 
 class Attention(nn.Module):
+
     def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
         super(Attention, self).__init__()
         self.num_heads = num_heads
         head_dim = dim // num_heads
-        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
         self.scale = qk_scale or math.sqrt(head_dim)
 
         self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
@@ -314,6 +317,7 @@ class Attention(nn.Module):
 
 
 class Block(nn.Module):
+
     def __init__(
         self,
         dim,
@@ -345,6 +349,7 @@ class Block(nn.Module):
 
 
 class SimpleEmbed(nn.Module):
+
     def __init__(self, d_feat, embed_dim):
         super(SimpleEmbed, self).__init__()
         self.d_feat = d_feat
@@ -361,18 +366,19 @@ class SimpleEmbed(nn.Module):
 class TransformerModel(nn.Module):
     def __init__(
         self,
-        d_feat: int,
+        d_feat: int = 6,
         embed_dim: int = 64,
         depth: int = 4,
         num_heads: int = 4,
         mlp_ratio: float = 4.0,
         qkv_bias: bool = True,
         qk_scale: Optional[float] = None,
-        pos_drop=0.0,
-        mlp_drop_rate=0.0,
-        attn_drop_rate=0.0,
-        drop_path_rate=0.0,
-        norm_layer=None,
+        pos_drop: float = 0.0,
+        mlp_drop_rate: float = 0.0,
+        attn_drop_rate: float = 0.0,
+        drop_path_rate: float = 0.0,
+        norm_layer: Optional[nn.Module] = None,
+        max_seq_len: int = 65,
     ):
         """
         Args:
@@ -397,7 +403,7 @@ class TransformerModel(nn.Module):
         self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
 
         self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
-        self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_drop)
+        self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop)
 
         dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
         self.blocks = nn.ModuleList(