Add MobileNetV2

This commit is contained in:
D-X-Y 2020-03-30 16:20:01 -07:00
parent d70b3c528c
commit e29c86d479
3 changed files with 128 additions and 0 deletions

View File

@ -0,0 +1,24 @@
import sys, time, random, argparse
from copy import deepcopy
import torchvision.models as models
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from utils import get_model_infos
#from models.ImageNet_MobileNetV2 import MobileNetV2
from torchvision.models.mobilenet import MobileNetV2
def main(width_mult):
# model = MobileNetV2(1001, width_mult, 32, 1280, 'InvertedResidual', 0.2)
model = MobileNetV2(width_mult=width_mult)
print(model)
flops, params = get_model_infos(model, (2, 3, 224, 224))
print('FLOPs : {:}'.format(flops))
print('Params : {:}'.format(params))
print('-'*50)
if __name__ == '__main__':
main(1.0)
main(1.4)

View File

@ -0,0 +1,101 @@
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
from torch import nn
from .initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False)
self.bn = nn.BatchNorm2d(out_planes)
self.relu = nn.ReLU6(inplace=True)
def forward(self, x):
out = self.conv( x )
out = self.bn ( out )
out = self.relu( out )
return out
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, num_classes, width_mult, input_channel, last_channel, block_name, dropout):
super(MobileNetV2, self).__init__()
if block_name == 'InvertedResidual':
block = InvertedResidual
else:
raise ValueError('invalid block name : {:}'.format(block_name))
inverted_residual_setting = [
# t, c, n, s
[1, 16 , 1, 1],
[6, 24 , 2, 2],
[6, 32 , 3, 2],
[6, 64 , 4, 2],
[6, 96 , 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# building first layer
input_channel = int(input_channel * width_mult)
self.last_channel = int(last_channel * max(1.0, width_mult))
features = [ConvBNReLU(3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = int(c * width_mult)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(self.last_channel, num_classes),
)
self.message = 'MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}'.format(width_mult, input_channel, last_channel, block_name, dropout)
# weight initialization
self.apply( initialize_resnet )
def get_message(self):
return self.message
def forward(self, inputs):
features = self.features(inputs)
vectors = features.mean([2, 3])
predicts = self.classifier(vectors)
return features, predicts

View File

@ -110,8 +110,11 @@ def get_imagenet_models(config):
super_type = getattr(config, 'super_type', 'basic') super_type = getattr(config, 'super_type', 'basic')
if super_type == 'basic': if super_type == 'basic':
from .ImagenetResNet import ResNet from .ImagenetResNet import ResNet
from .ImageNet_MobileNetV2 import MobileNetV2
if config.arch == 'resnet': if config.arch == 'resnet':
return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group) return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group)
elif config.arch == 'mobilenet_v2':
return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout)
else: else:
raise ValueError('invalid arch : {:}'.format( config.arch )) raise ValueError('invalid arch : {:}'.format( config.arch ))
elif super_type.startswith('infer'): # NAS searched architecture elif super_type.startswith('infer'): # NAS searched architecture