Update Q Model

This commit is contained in:
D-X-Y 2021-03-04 05:42:52 +00:00
parent ead6ae0842
commit e329b78cf4
4 changed files with 44 additions and 22 deletions

View File

@ -83,7 +83,18 @@ def main(xargs):
R.log_params(**flatten_dict(task))
model.fit(dataset)
R.save_objects(trained_model=model)
rid = R.get_recorder().id
# prediction
recorder = R.get_recorder()
print(recorder)
sr = SignalRecord(model, dataset, recorder)
sr.generate()
# backtest. If users want to use backtest based on their own prediction,
# please refer to https://qlib.readthedocs.io/en/latest/component/recorder.html#record-template.
par = PortAnaRecord(recorder, port_analysis_config)
par.generate()
if __name__ == "__main__":

View File

@ -1,4 +1,5 @@
from .drop import DropBlock2d, DropPath
from .mlp import MLP
from .weight_init import trunc_normal_
from .positional_embedding import PositionalEncoder

24
lib/layers/mlp.py Normal file
View File

@ -0,0 +1,24 @@
import torch.nn as nn
from typing import Optional
class MLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(self, in_features, hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x

View File

@ -26,6 +26,7 @@ import torch.nn as nn
import torch.optim as optim
import layers as xlayers
from utils import count_parameters_in_MB
from qlib.model.base import Model
from qlib.data.dataset import DatasetH
@ -75,7 +76,7 @@ class QuantTransformer(Model):
self.seed = seed
self.logger.info(
"GRU parameters setting:"
"Transformer parameters setting:"
"\nd_feat : {}"
"\nhidden_size : {}"
"\nnum_layers : {}"
@ -112,6 +113,10 @@ class QuantTransformer(Model):
torch.manual_seed(self.seed)
self.model = TransformerModel(d_feat=self.d_feat)
self.logger.info('model: {:}'.format(self.model))
self.logger.info('model size: {:.3f} MB'.format(count_parameters_in_MB(self.model)))
if optimizer.lower() == "adam":
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
elif optimizer.lower() == "gd":
@ -293,25 +298,6 @@ class QuantTransformer(Model):
# Real Model
class MLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
@ -353,7 +339,7 @@ class Block(nn.Module):
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))