Update Q Model
This commit is contained in:
parent
ead6ae0842
commit
e329b78cf4
@ -83,7 +83,18 @@ def main(xargs):
|
||||
R.log_params(**flatten_dict(task))
|
||||
model.fit(dataset)
|
||||
R.save_objects(trained_model=model)
|
||||
rid = R.get_recorder().id
|
||||
|
||||
# prediction
|
||||
recorder = R.get_recorder()
|
||||
print(recorder)
|
||||
sr = SignalRecord(model, dataset, recorder)
|
||||
sr.generate()
|
||||
|
||||
# backtest. If users want to use backtest based on their own prediction,
|
||||
# please refer to https://qlib.readthedocs.io/en/latest/component/recorder.html#record-template.
|
||||
par = PortAnaRecord(recorder, port_analysis_config)
|
||||
par.generate()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1,4 +1,5 @@
|
||||
from .drop import DropBlock2d, DropPath
|
||||
from .mlp import MLP
|
||||
from .weight_init import trunc_normal_
|
||||
|
||||
from .positional_embedding import PositionalEncoder
|
||||
|
24
lib/layers/mlp.py
Normal file
24
lib/layers/mlp.py
Normal file
@ -0,0 +1,24 @@
|
||||
import torch.nn as nn
|
||||
from typing import Optional
|
||||
|
||||
class MLP(nn.Module):
|
||||
# MLP: FC -> Activation -> Drop -> FC -> Drop
|
||||
def __init__(self, in_features, hidden_features: Optional[int] = None,
|
||||
out_features: Optional[int] = None,
|
||||
act_layer=nn.GELU,
|
||||
drop: Optional[float] = None):
|
||||
super(MLP, self).__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop or 0)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
@ -26,6 +26,7 @@ import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
import layers as xlayers
|
||||
from utils import count_parameters_in_MB
|
||||
|
||||
from qlib.model.base import Model
|
||||
from qlib.data.dataset import DatasetH
|
||||
@ -75,7 +76,7 @@ class QuantTransformer(Model):
|
||||
self.seed = seed
|
||||
|
||||
self.logger.info(
|
||||
"GRU parameters setting:"
|
||||
"Transformer parameters setting:"
|
||||
"\nd_feat : {}"
|
||||
"\nhidden_size : {}"
|
||||
"\nnum_layers : {}"
|
||||
@ -112,6 +113,10 @@ class QuantTransformer(Model):
|
||||
torch.manual_seed(self.seed)
|
||||
|
||||
self.model = TransformerModel(d_feat=self.d_feat)
|
||||
self.logger.info('model: {:}'.format(self.model))
|
||||
self.logger.info('model size: {:.3f} MB'.format(count_parameters_in_MB(self.model)))
|
||||
|
||||
|
||||
if optimizer.lower() == "adam":
|
||||
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
|
||||
elif optimizer.lower() == "gd":
|
||||
@ -293,25 +298,6 @@ class QuantTransformer(Model):
|
||||
# Real Model
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
||||
super(MLP, self).__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
@ -353,7 +339,7 @@ class Block(nn.Module):
|
||||
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||
|
Loading…
Reference in New Issue
Block a user