Update Q models
This commit is contained in:
		| @@ -1,2 +1,4 @@ | ||||
| from .drop import DropBlock2d, DropPath | ||||
| from .weight_init import trunc_normal_ | ||||
|  | ||||
| from .positional_embedding import PositionalEncoder | ||||
|   | ||||
							
								
								
									
										29
									
								
								lib/layers/positional_embedding.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										29
									
								
								lib/layers/positional_embedding.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,29 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import math | ||||
|  | ||||
| class PositionalEncoder(nn.Module): | ||||
|   # Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf | ||||
|  | ||||
|   def __init__(self, d_model, max_seq_len): | ||||
|     super(PositionalEncoder, self).__init__() | ||||
|     self.d_model = d_model | ||||
|     # create constant 'pe' matrix with values dependant on  | ||||
|     # pos and i | ||||
|     pe = torch.zeros(max_seq_len, d_model) | ||||
|     for pos in range(max_seq_len): | ||||
|       for i in range(0, d_model): | ||||
|         div = 10000 ** ((i // 2) * 2 / d_model) | ||||
|         value = pos / div | ||||
|         if i % 2 == 0: | ||||
|           pe[pos, i] = math.sin(value) | ||||
|         else: | ||||
|           pe[pos, i] = math.cos(value) | ||||
|     pe = pe.unsqueeze(0) | ||||
|     self.register_buffer('pe', pe) | ||||
|   | ||||
|    | ||||
|   def forward(self, x): | ||||
|     batch, seq, fdim = x.shape[:3] | ||||
|     embeddings = self.pe[:, :seq, :fdim] | ||||
|     return x + embeddings | ||||
| @@ -1,7 +1,6 @@ | ||||
| # Copyright (c) Microsoft Corporation. | ||||
| # Licensed under the MIT License. | ||||
|  | ||||
|  | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # | ||||
| ################################################## | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| @@ -26,7 +25,7 @@ import torch | ||||
| import torch.nn as nn | ||||
| import torch.optim as optim | ||||
|  | ||||
| from layers import DropPath, trunc_normal_ | ||||
| import layers as xlayers | ||||
|  | ||||
| from qlib.model.base import Model | ||||
| from qlib.data.dataset import DatasetH | ||||
| @@ -182,7 +181,6 @@ class QuantTransformer(Model): | ||||
|     losses = [] | ||||
|  | ||||
|     indices = np.arange(len(x_values)) | ||||
|     import pdb; pdb.set_trace() | ||||
|  | ||||
|     for i in range(len(indices))[:: self.batch_size]: | ||||
|  | ||||
| @@ -261,6 +259,7 @@ class QuantTransformer(Model): | ||||
|       torch.cuda.empty_cache() | ||||
|  | ||||
|   def predict(self, dataset): | ||||
|  | ||||
|     if not self.fitted: | ||||
|       raise ValueError("model is not fitted yet!") | ||||
|  | ||||
| @@ -294,9 +293,9 @@ class QuantTransformer(Model): | ||||
| # Real Model | ||||
|  | ||||
|  | ||||
| class Mlp(nn.Module): | ||||
| class MLP(nn.Module): | ||||
|   def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | ||||
|     super().__init__() | ||||
|     super(MLP, self).__init__() | ||||
|     out_features = out_features or in_features | ||||
|     hidden_features = hidden_features or in_features | ||||
|     self.fc1 = nn.Linear(in_features, hidden_features) | ||||
| @@ -314,8 +313,9 @@ class Mlp(nn.Module): | ||||
|  | ||||
|  | ||||
| class Attention(nn.Module): | ||||
|  | ||||
|   def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | ||||
|     super().__init__() | ||||
|     super(Attention, self).__init__() | ||||
|     self.num_heads = num_heads | ||||
|     head_dim = dim // num_heads | ||||
|     # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | ||||
| @@ -345,15 +345,15 @@ class Block(nn.Module): | ||||
|  | ||||
|   def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | ||||
|          drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | ||||
|     super().__init__() | ||||
|     super(Block, self).__init__() | ||||
|     self.norm1 = norm_layer(dim) | ||||
|     self.attn = Attention( | ||||
|       dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | ||||
|     # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | ||||
|     self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | ||||
|     self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity() | ||||
|     self.norm2 = norm_layer(dim) | ||||
|     mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|     self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | ||||
|     self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = x + self.drop_path(self.attn(self.norm1(x))) | ||||
| @@ -365,19 +365,18 @@ class SimpleEmbed(nn.Module): | ||||
|  | ||||
|   def __init__(self, d_feat, embed_dim): | ||||
|     super(SimpleEmbed, self).__init__() | ||||
|     self.d_feat = d_feat | ||||
|     self.proj = nn.Linear(d_feat, embed_dim) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     import pdb; pdb.set_trace() | ||||
|     B, C, H, W = x.shape | ||||
|     # FIXME look at relaxing size constraints | ||||
|     assert H == self.img_size[0] and W == self.img_size[1], \ | ||||
|       f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | ||||
|     x = self.proj(x).flatten(2).transpose(1, 2) | ||||
|     return x | ||||
|     x = x.reshape(len(x), self.d_feat, -1)  # [N, F*T] -> [N, F, T] | ||||
|     x = x.permute(0, 2, 1)                  # [N, F, T] -> [N, T, F] | ||||
|     out = self.proj(x) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class TransformerModel(nn.Module): | ||||
|  | ||||
|   def __init__(self, | ||||
|          d_feat: int, | ||||
|          embed_dim: int = 64, | ||||
| @@ -408,11 +407,9 @@ class TransformerModel(nn.Module): | ||||
|  | ||||
|     self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) | ||||
|  | ||||
|     """ | ||||
|     self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | ||||
|     self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | ||||
|     self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65) | ||||
|     self.pos_drop = nn.Dropout(p=drop_rate) | ||||
|     """ | ||||
|  | ||||
|     dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule | ||||
|     self.blocks = nn.ModuleList([ | ||||
| @@ -425,15 +422,12 @@ class TransformerModel(nn.Module): | ||||
|     # regression head | ||||
|     self.head = nn.Linear(self.num_features, 1) | ||||
|  | ||||
|     """ | ||||
|     trunc_normal_(self.pos_embed, std=.02) | ||||
|     trunc_normal_(self.cls_token, std=.02) | ||||
|     """ | ||||
|     xlayers.trunc_normal_(self.cls_token, std=.02) | ||||
|     self.apply(self._init_weights) | ||||
|  | ||||
|   def _init_weights(self, m): | ||||
|     if isinstance(m, nn.Linear): | ||||
|       trunc_normal_(m.weight, std=.02) | ||||
|       xlayers.trunc_normal_(m.weight, std=.02) | ||||
|       if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|         nn.init.constant_(m.bias, 0) | ||||
|     elif isinstance(m, nn.LayerNorm): | ||||
| @@ -441,21 +435,22 @@ class TransformerModel(nn.Module): | ||||
|       nn.init.constant_(m.weight, 1.0) | ||||
|  | ||||
|   def forward_features(self, x): | ||||
|     B = x.shape[0] | ||||
|     x = self.input_embed(x) | ||||
|     batch, flatten_size = x.shape | ||||
|     feats = self.input_embed(x)  # batch * 60 * 64 | ||||
|  | ||||
|     cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks | ||||
|     x = torch.cat((cls_tokens, x), dim=1) | ||||
|     x = x + self.pos_embed | ||||
|     x = self.pos_drop(x) | ||||
|     cls_tokens = self.cls_token.expand(batch, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks | ||||
|     feats_w_ct = torch.cat((cls_tokens, feats), dim=1) | ||||
|     feats_w_tp = self.pos_embed(feats_w_ct) | ||||
|     feats_w_tp = self.pos_drop(feats_w_tp) | ||||
|  | ||||
|     for blk in self.blocks: | ||||
|       x = blk(x) | ||||
|     xfeats = feats_w_tp | ||||
|     for block in self.blocks: | ||||
|       xfeats = block(xfeats) | ||||
|  | ||||
|     x = self.norm(x)[:, 0] | ||||
|     return x | ||||
|     xfeats = self.norm(xfeats)[:, 0] | ||||
|     return xfeats | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.forward_features(x) | ||||
|     x = self.head(x) | ||||
|     return x | ||||
|     feats = self.forward_features(x) | ||||
|     predicts = self.head(feats).squeeze(-1) | ||||
|     return predicts | ||||
|   | ||||
		Reference in New Issue
	
	Block a user