can train aircraft now
This commit is contained in:
parent
bb33ca9a68
commit
ef2608bb42
@ -2,11 +2,11 @@
|
|||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
||||||
#####################################################
|
#####################################################
|
||||||
import time, torch
|
import time, torch
|
||||||
from procedures import prepare_seed, get_optim_scheduler
|
from xautodl.procedures import prepare_seed, get_optim_scheduler
|
||||||
from utils import get_model_infos, obtain_accuracy
|
from xautodl.utils import get_model_infos, obtain_accuracy
|
||||||
from config_utils import dict2config
|
from xautodl.config_utils import dict2config
|
||||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
|
||||||
from models import get_cell_based_tiny_net
|
from xautodl.models import get_cell_based_tiny_net
|
||||||
|
|
||||||
|
|
||||||
__all__ = ["evaluate_for_seed", "pure_evaluate"]
|
__all__ = ["evaluate_for_seed", "pure_evaluate"]
|
||||||
|
@ -16,8 +16,9 @@ from xautodl.procedures import get_machine_info
|
|||||||
from xautodl.datasets import get_datasets
|
from xautodl.datasets import get_datasets
|
||||||
from xautodl.log_utils import Logger, AverageMeter, time_string, convert_secs2time
|
from xautodl.log_utils import Logger, AverageMeter, time_string, convert_secs2time
|
||||||
from xautodl.models import CellStructure, CellArchitectures, get_search_spaces
|
from xautodl.models import CellStructure, CellArchitectures, get_search_spaces
|
||||||
from xautodl.functions import evaluate_for_seed
|
from functions import evaluate_for_seed
|
||||||
|
|
||||||
|
from torchvision import datasets, transforms
|
||||||
|
|
||||||
def evaluate_all_datasets(
|
def evaluate_all_datasets(
|
||||||
arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger
|
arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger
|
||||||
@ -46,47 +47,85 @@ def evaluate_all_datasets(
|
|||||||
split_info = load_config(
|
split_info = load_config(
|
||||||
"configs/nas-benchmark/{:}-split.txt".format(dataset), None, None
|
"configs/nas-benchmark/{:}-split.txt".format(dataset), None, None
|
||||||
)
|
)
|
||||||
|
elif dataset.startswith("aircraft"):
|
||||||
|
if use_less:
|
||||||
|
config_path = "configs/nas-benchmark/LESS.config"
|
||||||
|
else:
|
||||||
|
config_path = "configs/nas-benchmark/aircraft.config"
|
||||||
|
split_info = load_config(
|
||||||
|
"configs/nas-benchmark/{:}-split.txt".format(dataset), None, None
|
||||||
|
)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise ValueError("invalid dataset : {:}".format(dataset))
|
raise ValueError("invalid dataset : {:}".format(dataset))
|
||||||
config = load_config(
|
config = load_config(
|
||||||
config_path, {"class_num": class_num, "xshape": xshape}, logger
|
config_path, {"class_num": class_num, "xshape": xshape}, logger
|
||||||
)
|
)
|
||||||
# check whether use splited validation set
|
# check whether use splited validation set
|
||||||
|
# if dataset == 'aircraft':
|
||||||
|
# split = True
|
||||||
if bool(split):
|
if bool(split):
|
||||||
assert dataset == "cifar10"
|
if dataset == "cifar10" or dataset == "cifar100":
|
||||||
ValLoaders = {
|
assert dataset == "cifar10"
|
||||||
"ori-test": torch.utils.data.DataLoader(
|
ValLoaders = {
|
||||||
valid_data,
|
"ori-test": torch.utils.data.DataLoader(
|
||||||
|
valid_data,
|
||||||
|
batch_size=config.batch_size,
|
||||||
|
shuffle=False,
|
||||||
|
num_workers=workers,
|
||||||
|
pin_memory=True,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
assert len(train_data) == len(split_info.train) + len(
|
||||||
|
split_info.valid
|
||||||
|
), "invalid length : {:} vs {:} + {:}".format(
|
||||||
|
len(train_data), len(split_info.train), len(split_info.valid)
|
||||||
|
)
|
||||||
|
train_data_v2 = deepcopy(train_data)
|
||||||
|
train_data_v2.transform = valid_data.transform
|
||||||
|
valid_data = train_data_v2
|
||||||
|
# data loader
|
||||||
|
train_loader = torch.utils.data.DataLoader(
|
||||||
|
train_data,
|
||||||
batch_size=config.batch_size,
|
batch_size=config.batch_size,
|
||||||
shuffle=False,
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train),
|
||||||
num_workers=workers,
|
num_workers=workers,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
)
|
)
|
||||||
}
|
valid_loader = torch.utils.data.DataLoader(
|
||||||
assert len(train_data) == len(split_info.train) + len(
|
valid_data,
|
||||||
split_info.valid
|
batch_size=config.batch_size,
|
||||||
), "invalid length : {:} vs {:} + {:}".format(
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid),
|
||||||
len(train_data), len(split_info.train), len(split_info.valid)
|
num_workers=workers,
|
||||||
)
|
pin_memory=True,
|
||||||
train_data_v2 = deepcopy(train_data)
|
)
|
||||||
train_data_v2.transform = valid_data.transform
|
ValLoaders["x-valid"] = valid_loader
|
||||||
valid_data = train_data_v2
|
elif dataset == "aircraft":
|
||||||
# data loader
|
ValLoaders = {
|
||||||
train_loader = torch.utils.data.DataLoader(
|
"ori-test": torch.utils.data.DataLoader(
|
||||||
train_data,
|
valid_data,
|
||||||
batch_size=config.batch_size,
|
batch_size=config.batch_size,
|
||||||
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train),
|
shuffle=False,
|
||||||
num_workers=workers,
|
num_workers=workers,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
)
|
)
|
||||||
valid_loader = torch.utils.data.DataLoader(
|
}
|
||||||
valid_data,
|
train_data_v2 = deepcopy(train_data)
|
||||||
batch_size=config.batch_size,
|
train_data_v2.transform = valid_data.transform
|
||||||
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid),
|
valid_data = train_data_v2
|
||||||
num_workers=workers,
|
# 使用 DataLoader
|
||||||
pin_memory=True,
|
train_loader = torch.utils.data.DataLoader(
|
||||||
)
|
train_data,
|
||||||
ValLoaders["x-valid"] = valid_loader
|
batch_size=config.batch_size,
|
||||||
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train),
|
||||||
|
num_workers=workers,
|
||||||
|
pin_memory=True)
|
||||||
|
valid_loader = torch.utils.data.DataLoader(
|
||||||
|
valid_data,
|
||||||
|
batch_size=config.batch_size,
|
||||||
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid),
|
||||||
|
num_workers=workers,
|
||||||
|
pin_memory=True)
|
||||||
else:
|
else:
|
||||||
# data loader
|
# data loader
|
||||||
train_loader = torch.utils.data.DataLoader(
|
train_loader = torch.utils.data.DataLoader(
|
||||||
@ -103,7 +142,7 @@ def evaluate_all_datasets(
|
|||||||
num_workers=workers,
|
num_workers=workers,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
)
|
)
|
||||||
if dataset == "cifar10":
|
if dataset == "cifar10" or dataset == "aircraft":
|
||||||
ValLoaders = {"ori-test": valid_loader}
|
ValLoaders = {"ori-test": valid_loader}
|
||||||
elif dataset == "cifar100":
|
elif dataset == "cifar100":
|
||||||
cifar100_splits = load_config(
|
cifar100_splits = load_config(
|
||||||
|
Loading…
Reference in New Issue
Block a user